|
|
(24 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt) |
Zeile 1: |
Zeile 1: |
| '''Axiom''' - [[Grundsatz]] einer [[Theorie]], einer [[Wissenschaft]] oder eines [[Axiomensystem|axiomatischen Systems]] | | '''Axiom''' - Als wahr angenommener Grundsatz |
|
| |
|
| == Beschreibung == | | == Beschreibung == |
| ; griechisch ἀξίωμα ''axíoma'' | | ; <nowiki>Griechisch: </nowiki>''axíoma'' (ἀξίωμα) |
| * „Forderung; Wille; Beschluss; Grundsatz; philos. (...) Satz, der keines Beweises bedarf“, „Wertschätzung, Urteil, als wahr angenommener Grundsatz“
| | : „Forderung; Wille; Beschluss; Grundsatz; philos. (...) Satz, der keines Beweises bedarf“, „Wertschätzung, Urteil, als wahr angenommener Grundsatz“ |
|
| |
|
| ; [[Grundsatz]] einer/s | | ; Akzeptierte Grundannahmen |
| * [[Theorie]] | | innerhalb eines Systems |
| | * [[Theorie]]n |
| * [[Wissenschaft]] | | * [[Wissenschaft]] |
| * [[Axiomensystem|axiomatischen Systems]] | | * [[Axiomensystem]] |
|
| |
|
| Innerhalb dieses Systems weder [[Begründung|begründet]] noch [[Deduktion|deduktiv]] abgeleitet
| | ; Als Grundlage willentlich akzeptiert |
| * sondern als Grundlage willentlich akzeptiert oder gesetzt wird
| | * Weder hier [[Begründung|begründet]], noch [[Deduktion|deduktiv]] abgeleitet |
|
| |
|
| == Abgrenzungen ==
| | ; Beispiel |
| Innerhalb einer formalisierbaren Theorie ist eine [[These]] ein Satz, der bewiesen werden soll.
| | Abhandlung über Hundeerziehung |
| | * Annahme, dass die Erde rund ist, als Axiom vorausgesetzt und hier nicht begründet |
|
| |
|
| Ein Axiom dagegen ist ein Satz, der nicht in der Theorie bewiesen werden soll, sondern beweislos vorausgesetzt wird. Wenn die gewählten Axiome der Theorie ''logisch unabhängig'' sind, so kann keines von ihnen aus den anderen hergeleitet werden. Im Rahmen eines formalen [[Kalkül]]s sind die Axiome dieses Kalküls immer [[Ableitung (Logik)|ableitbar]]. Dabei handelt es sich im formalen oder syntaktischen Sinne um einen [[Beweis (Logik)|Beweis]]; semantisch betrachtet handelt es sich um einen [[Zirkelschluss]]. Ansonsten gilt: „Geht eine Ableitung von den Axiomen eines Kalküls bzw. von wahren Aussagen aus, so spricht man von einem Beweis.“
| | <noinclude> |
| | |
| ; Axiom wird als Gegenbegriff zu [[Theorem]] (im engeren Sinn) verwendet.
| |
| Theoreme wie Axiome sind Sätze eines formalisierten Kalküls, die durch Ableitungsbeziehungen verbunden sind. Theoreme sind also Sätze, die durch formale Beweisgänge von Axiomen abgeleitet werden. Mitunter werden die Ausdrücke These und Theorem jedoch im weiteren Sinn für alle gültigen Sätze eines formalen Systems verwendet, d. h. als Oberbegriff, der sowohl Axiome als auch Theoreme im ursprünglichen Sinn umfasst.
| |
| | |
| Axiome können somit als Bedingungen der vollständigen [[Theorie]] verstanden werden, insofern diese in einem formalisierten Kalkül ausdrückbar sind. Innerhalb einer interpretierten [[Formale Sprache|formalen Sprache]] können verschiedene Theorien durch die Auswahl der Axiome unterschieden werden. Bei nicht-interpretierten Kalkülen der [[Formale Logik|formalen Logik]] spricht man statt von Theorien allerdings von ''logischen Systemen,'' die durch Axiome und [[Schlussregel]]n vollständig bestimmt sind. Dies relativiert den Begriff der Ableitbarkeit oder Beweisbarkeit: Sie besteht immer nur in Bezug auf ein gegebenes System. Die Axiome und die abgeleiteten Aussagen gehören zur [[Metasprache#Mehrdeutigkeit des Ausdrucks „Objektsprache“|Objektsprache]], die Regeln zur [[Metasprache]].
| |
| | |
| Ein Kalkül ist jedoch nicht notwendigerweise ein ''Axiomatischer Kalkül,'' der also „aus einer Menge von Axiomen und einer möglichst kleinen Menge von Schlussregeln“ besteht. Daneben gibt es auch [[Beweistheorie#Arten von Beweiskalkülen|Beweis-Kalküle]] und [[Baumkalkül|Tableau-Kalküle]].
| |
| | |
| [[Immanuel Kant]] bezeichnet Axiome als „synthetische Grundsätze a priori, sofern sie unmittelbar gewiß sind“ und schließt sie durch diese Definition aus dem Bereich der Philosophie aus. Diese nämlich gründe sich auf Begriffe, die als abstrakte Vorstellungsbilder niemals als Gegenstand unmittelbarer Anschauung ([[Evidenz (Philosophie)|Evidenz]]) besitzen. Daher grenzt er die diskursiven Grundsätze der Philosophie von den intuitiven der Mathematik ab: Erstere müssten sich „bequemen, ihre Befugniß wegen derselben durch gründliche Deduction zu rechtfertigen“ und erfüllen daher nicht die Kriterien eines a priori.
| |
| | |
| == Unterscheidungen ==
| |
| Der Ausdruck ''Axiom'' wird in drei Grundbedeutungen verwendet. Er bezeichnet
| |
| # einen unmittelbar einleuchtenden Grundsatz – den ''klassischen (materialen) Axiombegriff,''
| |
| # ein Naturgesetz, das als Prinzip für empirisch gut bestätigte Regeln [[Postulat|postuliert]] werden kann – den ''naturwissenschaftlichen (physikalischen) Axiombegriff,''
| |
| # einen Ausgangssatz, der in einem [[Kalkül]] einer formalen Sprache als gültig vorausgesetzt wird – den ''modernen (formalen) Axiombegriff''.
| |
| | |
| === Klassischer Axiombegriff ===
| |
| Der klassische Axiombegriff wird auf die ''Elemente'' der Geometrie des [[Euklid]] und die [[Analytica posteriora]] des [[Aristoteles]] zurückgeführt. ''Axiom'' bezeichnet in dieser Auffassung ein unmittelbar einleuchtendes [[Prinzip]] bzw. eine Bezugnahme auf ein solches. Ein Axiom in diesem [[Essentialismus|essentialistischen]] Sinne bedarf aufgrund seiner Evidenz keines Beweises. Axiome wurden dabei angesehen als unbedingt wahre Sätze über existierende Gegenstände, die diesen Sätzen als objektive Realitäten gegenüberstehen. Diese Bedeutung war bis in das 19. Jahrhundert hinein vorherrschend.
| |
|
| |
|
| Am Ende des 19. Jahrhunderts erfolgte eine „Abnabelung der Geometrie von der Wirklichkeit“.
| |
|
| |
| Die systematische Untersuchung unterschiedlicher Axiomensysteme für unterschiedliche Geometrien ([[Euklidische Geometrie|euklidische]], [[Hyperbolische Geometrie|hyperbolische]], [[Sphärische Geometrie|sphärische]] Geometrie usw.), die unmöglich allesamt die [[Mögliche Welt#Möglichkeit, Notwendigkeit und Kontingenz|aktuale]] Welt beschreiben konnten, musste zur Folge haben, dass der Axiombegriff formalistischer verstanden wurde und Axiome insgesamt im Sinne von Definitionen einen konventionellen Charakter erhielten. Als wegweisend erwiesen sich die Schriften [[David Hilbert]]s zur Axiomatik, der das aus den empirischen Wissenschaften stammende [[Empirische Evidenz|Evidenzpostulat]] durch die formalen Kriterien von [[Axiomensystem#Konsistenz|Vollständigkeit]] und [[Axiomensystem#Konsistenz|Widerspruchsfreiheit]] ersetzte. Eine alternative Auffassungsweise bezieht daher ein Axiomensystem nicht einfach hin auf die aktuale Welt, sondern folgt dem Schema: ''Wenn'' irgendeine Struktur die Axiome erfüllt, ''dann'' erfüllt sie auch die Ableitungen aus den Axiomen (sog. ''Theoreme''). Derartige Auffassungen lassen sich im Implikationismus, Deduktivismus oder eliminativen Strukturalismus verorten.
| |
|
| |
| In axiomatisierten Kalkülen im Sinne der modernen formalen Logik können die klassischen epistemologischen (Evidenz, Gewissheit), ontologischen (Referenz auf ontologisch Grundlegenderes) oder konventionellen (Akzeptanz in einem bestimmten Kontext) Kriterien für die Auszeichnung von Axiomen entfallen. Axiome unterscheiden sich von Theoremen dann nur formal dadurch, dass sie die Grundlage logischer Ableitungen in einem gegebenen Kalkül sind. Als „grundsätzliches“ und „[[Axiomensystem#Unabhängigkeit|unabhängiges]]“ Prinzip sind sie innerhalb des Axiomensystems nicht aus anderen Ausgangssätzen abzuleiten und ''[[a priori]]'' keines formalen Beweises bedürftig.
| |
|
| |
| === Naturwissenschaftlicher Axiombegriff ===
| |
| In den empirischen Wissenschaften bezeichnet man als Axiome auch grundlegende Gesetze, die vielfach empirisch bestätigt worden sind. Als Beispiel werden die [[Newtonsche Axiome|Newtonschen Axiome]] der Mechanik genannt.
| |
|
| |
| Auch wissenschaftliche Theorien, insbesondere die Physik, beruhen auf Axiomen. Aus diesen werden Theorien geschlussfolgert, deren Theoreme und [[Korollar]]e den Ausgang von [[Experiment]]en vorhersagen können. Stehen Aussagen der Theorie im Widerspruch zur experimentellen Beobachtung, werden die Axiome angepasst. Beispielsweise liefern die Newtonschen Axiome nur für „langsame“ und „große“ Systeme gute Vorhersagen und sind durch die Axiome der [[Spezielle Relativitätstheorie|speziellen Relativitätstheorie]] und der [[Quantenmechanik]] abgelöst bzw. ergänzt worden. Trotzdem verwendet man die Newtonschen Axiome weiter für solche Systeme, da die Folgerungen einfacher sind und für die meisten Anwendungen die Ergebnisse hinreichend genau sind.
| |
|
| |
| === Formaler Axiombegriff ===
| |
| Durch [[David Hilbert|Hilbert]] (1899) wurde ein formaler Axiombegriff herrschend: Ein Axiom ist jede unabgeleitete Aussage. Dies ist eine rein formale Eigenschaft. Die Evidenz oder der [[Ontologie|ontologische]] Status eines Axioms spielen keine Rolle und bleiben einer gesondert zu betrachtenden [[Interpretation (Logik)|Interpretation]] überlassen.
| |
|
| |
| Ein ''Axiom'' ist dann eine grundlegende Aussage, die
| |
| * Bestandteil eines formalisierten Systems von Sätzen ist,
| |
| * {{Anker|ohneBeweisAngenommen}}ohne Beweis angenommen wird und
| |
| * aus der zusammen mit anderen Axiomen alle Sätze (Theoreme) des Systems logisch abgeleitet werden.
| |
|
| |
| Teilweise wird behauptet, in diesem Verständnis seien Axiome völlig willkürlich: Ein Axiom sei „ein unbewiesener und daher unverstandener Satz“, denn ob ein Axiom auf Einsicht beruht und daher „verstehbar“ ist, spielt zunächst keine Rolle. Richtig daran ist, dass ein Axiom – bezogen auf eine Theorie – unbewiesen ist. Das heißt aber nicht, dass ein Axiom unbeweisbar sein muss. Die Eigenschaft, ein Axiom zu sein, ist relativ zu einem formalen System. Was in einer Wissenschaft ein Axiom ist, kann in einer anderen ein Theorem sein.
| |
|
| |
| Ein Axiom ist ''unverstanden'' nur insofern, als seine Wahrheit formal nicht bewiesen, sondern vorausgesetzt ist. Der moderne Axiombegriff dient dazu, die Axiomeigenschaft von der Evidenzproblematik abzukoppeln, was aber nicht notwendigerweise bedeutet, dass es keine Evidenz gibt. Es ist allerdings ein bestimmendes Merkmal der axiomatischen Methode, dass bei der Deduktion der Theoreme nur auf der Basis formaler Regeln geschlossen wird und nicht von der Deutung der axiomatischen Zeichen Gebrauch gemacht wird.
| |
|
| |
| Die Frage, ob es (mathematische, logische, reale) Objekte gibt, für die das Axiomensystem zutrifft, interessiert zunächst nicht, wird aber mit der Widerspruchsfreiheit grob gleichgesetzt. Natürlich gelten Beispielobjekte, bei denen man mit dem Axiomensystem erfolgreich arbeiten kann, als Beleg für die Existenz solcher Objekte und für die Widerspruchsfreiheit des Axiomensystems.
| |
|
| |
| == Beispiele für Axiome ==
| |
| === Traditionelle Logik ===
| |
| * [[Identität (Logik)|Satz von der Identität]]
| |
| * [[Satz vom Widerspruch]]
| |
| * [[Satz vom ausgeschlossenen Dritten]]
| |
| * [[Satz vom zureichenden Grund]]
| |
|
| |
| === Klassische Logik ===
| |
| * [[Grundgesetz der Werthverläufe|Komprehensionsaxiom]]: „Zu jedem [[Prädikat (Logik)|Prädikat]] ''P'' gibt es die [[Menge (Mathematik)|Menge]] aller Dinge, die dieses Prädikat erfüllen.“
| |
| Die ursprüngliche Formulierung stammt aus der [[Naive Mengenlehre|naiven Mengenlehre]] [[Georg Cantor]]s und schien lediglich den Zusammenhang zwischen [[Extension und Intension]] eines [[Begriff (Philosophie)|Begriffs]] klar auszusprechen. Es bedeutete einen großen Schock, als sich herausstellte, dass es in der [[Axiomatisierung]] durch [[Gottlob Frege]] nicht ''widerspruchsfrei'' zu den anderen Axiomen hinzugefügt werden konnte, sondern die [[Russellsche Antinomie]] hervorrief.
| |
|
| |
| === Mathematik ===
| |
| [[Datei:Skizze zum mathematischen Gebäude.svg|mini|hochkant=1.2|Axiome bilden das Fundament der Mathematik.]]
| |
| Generell werden in der Mathematik Begriffe wie [[natürliche Zahl]]en, [[Monoid]], [[Gruppe (Mathematik)|Gruppe]], [[Ring (Algebra)|Ring]], [[Körper (Algebra)|Körper]], [[Hilbertraum]], [[Topologischer Raum]] etc. durch ein System von Axiomen charakterisiert.
| |
| Man spricht bspw. von ''den [[Peano-Axiome]]n'' (für die natürliche Zahlen), ''den Gruppenaxiomen'', ''den Ringaxiomen'' usw.
| |
| Manchmal werden einzelne Forderungen (auch die Folgerungen) in einem System auch ''Gesetz'' genannt (z. B. das [[Assoziativgesetz]]).
| |
|
| |
| Ein spezielles Axiomensystem der genannten Beispiele – die natürlichen Zahlen mit den Peano-Axiomen ggf. ausgenommen (s. u.) – ist durchaus als ''Definition'' aufzufassen.
| |
| Damit man nämlich ein gewisses mathematisches Objekt, bspw. als Monoid ansprechen (und danach weitere Eigenschaften folgern) kann, ist nachzuweisen (mithilfe anderer Axiome oder Theoreme), dass die Forderungen, die im [[Monoid#Definition|Axiomensystem des Monoids]] formuliert sind, allesamt für das Objekt zutreffen.
| |
| Ein wichtiges Beispiel ist die [[Komposition (Mathematik)|Hintereinanderausführung]] von Funktionen, bei der der Nachweis der [[Komposition (Mathematik)#Assoziativität|Assoziativität]] nicht völlig trivial ist. Misslänge nämlich dieser Nachweis bei einem der Axiome, dann könnte das [[Komposition (Mathematik)#Algebraische Strukturen|betreffende Objekt <math>\mathcal{F}(A)</math>]] nicht als Monoid angesehen werden. (Außerordentlich schwierig ist der auf [[Donald Knuth|D. Knuth]] zurückgehende Nachweis der Assoziativität der [[Satz von Zeckendorf#Fibonacci-Multiplikation|Fibonacci-Multiplikation]].)
| |
|
| |
| Insofern sind viele der genannten „Axiomensysteme“ überhaupt nicht (und stehen geradezu im Gegensatz zu) [[#Formaler Axiombegriff|grundlegende/n Aussagen]], die als „unabgeleitete Aussagen“ [[#ohneBeweisAngenommen|„ohne Beweis angenommen“]] werden.
| |
| * Die [[Körper (Algebra)|Körperaxiome]] in Verbindung mit den [[Geordneter Körper|Anordnungsaxiomen]] und dem [[Vollständiger Raum|Vollständigkeitsaxiom]] definieren die [[Reelle Zahl|reellen Zahlen]].
| |
| * [[Parallelenaxiom]]: „Zu jeder [[Gerade]]n und jedem [[Punkt (Geometrie)|Punkt]], der nicht auf dieser Geraden liegt, gibt es genau eine zu der Geraden [[Parallel (Geometrie)|parallele]] Gerade durch diesen Punkt.“ Dieses [[Postulat]] der [[Euklidische Geometrie|euklidischen Geometrie]] galt immer als weniger einleuchtend als die anderen. Da seine Gültigkeit bestritten wurde, versuchte man, es aus den anderen Definitionen und Postulaten abzuleiten. Im Rahmen der Axiomatisierung der Geometrie um die Wende zum 19. Jahrhundert stellte sich heraus, dass eine solche Ableitung nicht möglich ist, da es von der Axiomatisierung der anderen Postulate logisch ''unabhängig'' ist. Damit war der Weg frei zur Anerkennung ''[[Nichteuklidische Geometrie|nichteuklidischer Geometrien]].''
| |
| * Der Begriff „Wahrscheinlichkeit“ wird seit 1933 durch ein von [[Kolmogorow]] aufgestelltes Axiomensystem exakt implizit definiert. Damit wurden alle verschiedenen stochastischen Schulen – Franzosen, Deutsche, Briten, Frequentisten, Bayesianer, Probabilisten und Statistiker – erstmals mit einer einheitlichen Theorie versorgt.
| |
|
| |
| Obwohl es andere grundlegende Systeme ([[Prädikatenlogik erster Stufe|Theorien erster Ordnung]]) durchaus gibt, werden für das Zählen in den natürlichen Zahlen die Peano-Axiome allermeist ohne weitere Rückführung zugrunde gelegt. Beispielsweise:
| |
| * „Jede [[natürliche Zahl]] ''n'' hat genau einen [[Nachfolger (Mathematik)|Nachfolger]] ''n+1.''“<br />ist eine Zusammenfassung der Axiome 2 und 4 der [[Peano-Axiome#Ursprüngliche Formalisierung|Peano-Axiome]].
| |
| * Das [[Vollständige Induktion#Das Axiom der vollständigen Induktion|Axiom der vollständigen Induktion]] (Peano-Axiom Nummer 5) stellt eine außerordentlich wichtige [[Beweis (Mathematik)|Beweismethode]] in der Mathematik dar.
| |
|
| |
| === Physik ===
| |
| ==== Vorschläge zur Axiomatisierung wichtiger Teilgebiete ====
| |
| Auch Theorien der [[Empirie#Empirische Wissenschaften|empirischen Wissenschaften]] lassen sich „axiomatisiert“ [[Rationale Rekonstruktion|rekonstruieren]].
| |
| In der [[Wissenschaftstheorie]] existieren allerdings unterschiedliche Auffassungen darüber, was es überhaupt heißt, eine „Axiomatisierung einer Theorie“ vorzunehmen.
| |
|
| |
| Für unterschiedliche physikalische Theorien wurden Axiomatisierungen vorgeschlagen. [[Hans Reichenbach (Physiker)|Hans Reichenbach]] widmete sich u. a. in drei Monographien seinem Vorschlag einer Axiomatik der [[Relativitätstheorie]],
| |
| wobei er insbesondere stark von Hilbert beeinflusst war.
| |
| Auch [[Alfred Robb]] legten Axiomatisierungsvorschläge zur [[Spezielle Relativitätstheorie|speziellen Relativitätstheorie]] vor. Sowohl für die spezielle wie für die [[allgemeine Relativitätstheorie]] existiert inzwischen eine Vielzahl von in der Wissenschaftstheorie und in der [[Philosophie der Physik]] diskutierten Axiomatisierungsversuchen. [[Patrick Suppes]] und andere haben etwa für die [[Klassische Mechanik|klassische Partikelmechanik]] in ihrer [[Isaac Newton|Newtonschen]] Formulierung eine vieldiskutierte axiomatische Rekonstruktion im modernen Sinne vorgeschlagen,
| |
| ein Schüler Hilberts, sowie [[Hans Hermes]] Axiomatisierungen der klassischen Mechanik vor. Im Bereich der [[Kosmologie]] war für Ansätze einer Axiomatisierung u. a. [[Edward Arthur Milne]] besonders einflussreich.
| |
|
| |
| Für die klassische [[Thermodynamik]] existieren Axiomatisierungsvorschläge u. a. von Giles,
| |
| Boyling,
| |
|
| |
| Jauch,
| |
| Lieb und Yngvason.
| |
|
| |
| Für alle physikalischen Theorien, die mit Wahrscheinlichkeiten operieren, insbes. die [[Statistische Mechanik]], wurde die Axiomatisierung der [[Wahrscheinlichkeitsrechnung]] durch [[Andrei Nikolajewitsch Kolmogorow|Kolmogorow]] wichtig.
| |
|
| |
|
| |
| ==== Verhältnis von Experiment und Theorie ====
| |
| Die Axiome einer physikalischen Theorie sind weder formal [[Beweis (Mathematik)|beweisbar]] noch, so die inzwischen übliche Sichtweise, direkt und insgesamt durch Beobachtungen [[Verifikation|verifizierbar]] oder [[Falsifikation|falsifizierbar]]. Einer insbesondere im [[Strukturalistisches Theorienkonzept|wissenschaftstheoretischen Strukturalismus]] verbreiteten Sichtweise von Theorien und ihrem Verhältnis zu Experimenten und resultierenden Redeweise zufolge betreffen Prüfungen einer bestimmten Theorie an der Realität vielmehr üblicherweise Aussagen der Form „dieses System ist eine klassische Partikelmechanik“. Gelingt ein entsprechender Theorietest, wurden z. B. korrekte Prognosen von Messwerten angegeben, kann diese Überprüfung ggf. als ''Bestätigung'' dafür gelten, dass ein entsprechendes System zutreffenderweise unter die intendierten Anwendungen der entsprechenden Theorie gezählt wurde, bei wiederholten Fehlschlägen kann und sollte die Menge der intendierten Anwendungen um entsprechende Typen von Systemen reduziert werden.
| |
|
| |
| <noinclude>
| |
| == Anhang == | | == Anhang == |
| === Siehe auch === | | === Siehe auch === |
Zeile 121: |
Zeile 27: |
| # https://de.wikipedia.org/wiki/Axiom | | # https://de.wikipedia.org/wiki/Axiom |
|
| |
|
| [[Kategorie:Wissenschaftstheorie]] | | [[Kategorie:Glossar]] |
| [[Kategorie:Erkenntnistheorie]]
| | |
| [[Kategorie:Logik]]
| |
| </noinclude> | | </noinclude> |