Dualsystem/Umrechnung: Unterschied zwischen den Versionen

Aus Foxwiki
Die Seite wurde neu angelegt: „== Umrechnung == === Umrechnen von Dualzahlen in andere Stellenwertsysteme === {{Hauptartikel|Zahlbasiswechsel}} Durch die kleine Basis ergibt sich der Nachteil, dass Zahlen im Verhältnis zu Dezimalzahlen relativ lang und schwer zu überschauen sind (siehe Tabelle unten). Das hat zur Verbreitung des Hexadezimalsystems geführt, welches die Basis 16 besitzt. Da 16 eine Potenz von 2 ist, ist es besonders einfach möglich, Dualzahlen in Hexadezimal…“
 
Keine Bearbeitungszusammenfassung
 
(Eine dazwischenliegende Version desselben Benutzers wird nicht angezeigt)
Zeile 1: Zeile 1:
== Umrechnung ==
== Umrechnung ==
=== Umrechnen von Dualzahlen in andere Stellenwertsysteme ===
=== Umrechnen von Dualzahlen in andere [[Stellenwertsysteme]] ===
{{Hauptartikel|Zahlbasiswechsel}}
{{Hauptartikel|Zahlbasiswechsel}}
Durch die kleine Basis ergibt sich der Nachteil, dass Zahlen im Verhältnis zu Dezimalzahlen relativ lang und schwer zu überschauen sind (siehe Tabelle unten). Das hat zur Verbreitung des [[Hexadezimalsystem]]s geführt, welches die Basis 16 besitzt.
Durch die kleine Basis ergibt sich der Nachteil, dass Zahlen im Verhältnis zu Dezimalzahlen relativ lang und schwer zu überschauen sind (siehe Tabelle unten). Das hat zur Verbreitung des [[Hexadezimalsystem]]s geführt, welches die Basis 16 besitzt.
Zeile 89: Zeile 89:
  1 &- 2^0 &=& 0 &\mathrm{ Wertigkeit }\ \ \mathbf{1}
  1 &- 2^0 &=& 0 &\mathrm{ Wertigkeit }\ \ \mathbf{1}
\end{matrix}\ \right\downarrow</math>
\end{matrix}\ \right\downarrow</math>
[[Kategorie:Zahlensystem]]

Aktuelle Version vom 21. März 2024, 21:07 Uhr

Umrechnung

Umrechnen von Dualzahlen in andere Stellenwertsysteme

Vorlage:Hauptartikel Durch die kleine Basis ergibt sich der Nachteil, dass Zahlen im Verhältnis zu Dezimalzahlen relativ lang und schwer zu überschauen sind (siehe Tabelle unten). Das hat zur Verbreitung des Hexadezimalsystems geführt, welches die Basis 16 besitzt. Da 16 eine Potenz von 2 ist, ist es besonders einfach möglich, Dualzahlen in Hexadezimalzahlen umzurechnen. Dazu werden je vier Stellen der Dualzahl durch eine Hexadezimalstelle ersetzt, was auch die Länge der dargestellten Zahlen um den Faktor vier verringert. Die Hexadezimalziffern mit dem Wert 0–15 werden in der Regel durch die Ziffernsymbole 0–9 und die Großbuchstaben A–F (für die Werte 10–15) dargestellt. Dadurch sind sie verhältnismäßig gut lesbar, so lässt sich zum Beispiel leicht feststellen, dass EDA5(16) größer ist als ED7A(16), wohingegen sich die entsprechenden Dualzahlen 1110110110100101(2) und 1110110101111010(2) nicht so schnell überblicken lassen.

Dualsystem 0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111
Dezimalsystem 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Oktalsystem 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17
Hexadezimalsystem 0 1 2 3 4 5 6 7 8 9 A B C D E F

Vom Dualsystem ins Dezimalsystem

Um eine Dualzahl in die entsprechende Dezimalzahl umzurechnen, werden alle Ziffern jeweils mit ihrem Stellenwert (entsprechende Zweierpotenz) multipliziert und dann addiert.

Beispiel:

Endet die Dualzahl mit einer 1, so ist die Dezimalzahl eine ungerade Zahl. Ist die letzte Ziffer der Dualzahl eine 0, so ist die Dezimalzahl gerade.

Beispiel:

Dieses Verfahren kann auch in Form einer Tabelle aufgeschrieben werden. Dazu notiert man die einzelnen Ziffern einer Dualzahl in Spalten, die mit dem jeweiligen Stellenwert der Ziffer überschrieben sind. In der folgenden Tabelle ist der Stellenwert orange hinterlegt. In jeder der drei Zeilen des weißen Teils steht eine Dualzahl:

Stellenwert
32 16 8 4 2 1
Dualzahl 0 0 0 1 0 1 5 Dezimalzahl
1 0 0 0 1 1 35
0 0 1 0 1 0 10

Man addiert nun alle Stellenwerte, die über den Einsen der Dualzahl stehen und erhält die entsprechende grün hinterlegte Dezimalzahl. Um zum Beispiel den Dezimalwert der dritten Dualzahl zu errechnen, werden die Stellenwerte 8 und 2 addiert. Das Ergebnis ist 10.

Diese Tabellenmethode ist auch für Stellenwertsysteme zu anderen Basen möglich; die Besonderheit im Dualsystem ist, dass der jeweilige Feldeintrag ('0' oder '1') nicht erst mit der Wertigkeit der Stelle multipliziert werden muss, sondern direkt als Auswahl-Flag ('nein' / 'ja') dieser Stellenwertigkeit zur Addition verwendet werden kann.

Vom Dezimalsystem ins Dualsystem

Es gibt mehrere Möglichkeiten der Umrechnung ins Dualsystem. Im Folgenden ist die Divisionsmethode (auch Modulo-Methode genannt) am Beispiel 41(10) beschrieben:

Die entsprechende Dualzahl ergibt sich durch Notation der errechneten Reste von unten nach oben: 101001(2).

Eine andere Methode ist die Subtraktionsmethode. Bei dieser subtrahiert man jeweils die größtmögliche Zweierpotenz von der umzurechnenden Dezimalzahl. Wenn die nächstgrößte Zweierpotenz größer als die Differenz der vorherigen Subtraktion ist, so ist die Wertigkeit der nächsten Binärstelle 0. Andernfalls ist die nächste Binärstelle 1, und die Zweierpotenz wird abgezogen. Um diese Methode zu verdeutlichen, bedienen wir uns weiter des Beispiels der Zahl 41: