Linux/Netzwerk/Infrastruktur: Unterschied zwischen den Versionen

Aus Foxwiki
Die Seite wurde neu angelegt: „== Netzwerkinfrastruktur == ; Elementare Netzwerkinfrastruktur eines Debian-Systems {| class="wikitable sortable options" |- ! | Pakete ! | Beschreibung |- | | [http://packages.debian.org/sid/network-manager network-manager] | | [https://de.wikipedia.org/wiki/NetworkManager NetworkManager] (Daemon): das Netzwerk automatisch verwalten |- | | [http://packages.debian.org/sid/network-manager-gnome network-manager-gnome] | | [https://de.wikipedia.org/wiki/Netw…“
 
Zeile 96: Zeile 96:




== Aufgaben ==
==== Auflösung des Rechnernamens ====
==== Auflösung des Rechnernamens ====
* Die Auflösung des Rechnernamens (hostname) wird derzeit auch durch den [https://de.wikipedia.org/wiki/Name_Service_Switch NSS-(Name-Service-Switch-)]Mechanismus unterstützt.  
* Die Auflösung des Rechnernamens (hostname) wird derzeit auch durch den [https://de.wikipedia.org/wiki/Name_Service_Switch NSS-(Name-Service-Switch-)]Mechanismus unterstützt.  

Version vom 16. Dezember 2024, 13:02 Uhr

Netzwerkinfrastruktur

Elementare Netzwerkinfrastruktur eines Debian-Systems
Pakete Beschreibung
network-manager NetworkManager (Daemon): das Netzwerk automatisch verwalten
network-manager-gnome NetworkManager (GNOME-Frontend)
ifupdown standardisiertes Werkzeug zum Aktivieren und Deaktivieren des Netzwerks (Debian-spezifisch)
isc-dhcp-client DHCP-Client
pppoeconf Konfigurations-Hilfswerkzeug für PPPoE-Verbindungen
wpasupplicant clientseitige Unterstützung für WPA und WPA2 (IEEE 802.11i)
wpagui Qt-GUI-Programm für wpa_supplicant
wireless-tools Werkzeuge zum Bearbeiten der Linux Wireless Extensions
iw Werkzeug zum Konfigurieren von Drahtlos-Netzwerkgeräten unter Linux
iproute2 iproute2, IPv6 und andere erweiterte Netzwerkkonfiguration: ip(8), tc(8) usw.
iptables Administrationswerkzeuge für Paketfilterung und NAT (Netfilter)
iputils-ping Erreichbarkeit eines fernen Rechners über das Netzwerk testen, entweder mittels Rechnername oder IP-Addresse (iproute2)
iputils-arping Erreichbarkeit eines fernen Rechners über das Netzwerk mittels seiner ARP-Addresse testen
iputils-tracepath Netzwerkpfad zu einem fernen Rechner verfolgen
ethtool Eigenschaften von Ethernet-Geräten anzeigen oder ändern
mtr-tiny Netzwerkpfad zu einem fernen Rechner verfolgen (Curses-basiert)
mtr Netzwerkpfad zu einem fernen Rechner verfolgen (Curses- und GTK-basiert)
gnome-nettool Werkzeuge für allgemeine Netzwerkinformations-Operationen (GNOME)
nmap Netzwerk-Mapper/Port-Scanner (Nmap, konsolen-basiert)
zenmap Netzwerk-Mapper/Port-Scanner (GTK-basiert)
tcpdump Netzwerkverkehr-Analysator (Tcpdump, konsolen-basiert)
wireshark Netzwerkverkehr-Analysator (Wireshark, GTK-basiert)
tshark Netzwerkverkehr-Analysator (konsolen-basiert)
tcptrace eine Zusammenfassung von Verbindungen auf Basis der tcpdump-Ausgabe erstellen
snort flexibles Einbruchmeldesystem für das Netzwerk (Snort)
ntopng Daten über die Netzwerknutzung im Webbrowser anzeigen
dnsutils Netzwerk-Clients, die mit BIND bereitgestellt werden: nslookup(8), nsupdate(8), dig(8)
dlint DNS-Zoneninformationen mittels Nameserver-Abfragen überprüfen
dnstracer eine Verkettung von DNS-Servern zu ihrer Quelle verfolgen


Aufgaben

Auflösung des Rechnernamens

  • Die Auflösung des Rechnernamens (hostname) wird derzeit auch durch den NSS-(Name-Service-Switch-)Mechanismus unterstützt.
  • Die Auflösung läuft wie folgt ab:# Die "/etc/nsswitch.conf"-Datei mit Einträgen wie "hosts: files dns" bestimmt die Reihenfolge der Rechnernamenauflösung.
    • Dies ersetzt die alte Funktionalität der "order"-Einträge in "/etc/host.conf"
  1. Als erstes wird in diesem Beispiel die files-Methode aufgerufen.
    • Wenn der Rechnername in der "/etc/hosts"-Datei gefunden wird, werden alle gültigen Adressen für den Rechner ausgegeben und die Abfrage wird beendet. (Die "/etc/host.conf"-Datei enthält "multi on".)
  2. Dann wird die dns-Methode wird aufgerufen.
  • Wenn der Rechnername über das Internet Domain Name System (DNS) (definiert über die Datei "/etc/resolv.conf") gefunden wird, werden alle dafür gültigen Adressen ausgegeben und die Abfrage wird beendet.
/etc/hosts
127.0.0.1 localhost
127.0.1.1 host_name

# The following lines are desirable for IPv6 capable hosts
::1 localhost ip6-localhost ip6-loopback
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters

Jede Zeile beginnt mit einer IP-Addresse und dahinter steht jeweils der zugeordnete Rechnername.

Die IP-Adresse 127.0.1.1 in der zweiten Zeile dieses Beispiels ist auf einigen anderen Unix-ähnlichen Systemen möglicherweise nicht vorhanden.

  • Der Debian Installer erstellt diesen Eintrag für Systeme ohne feste IP-Adresse als provisorische Lösung für einige Software-Produkte (z. B. GNOME), wie in Fehler #719621 dokumentiert.
  • Der Eintrag rechnername entspricht dem in"/etc/hostname" festgelegten Rechnernamen.
  • Auf Systemen mit einer festen IP-Adresse sollte allerdings diese feste IP-Adresse statt der 127.0.1.1 verwendet werden.

Bei Systemen mit einer festen IP-Adresse und einem voll qualifizierten Domain-Namen (FQDN), bereitgestellt durch das Domain Name System (DNS), sollte rechnername.domain-name verwendet werden statt nur rechnername.

Die Datei "/etc/resolv.conf" ist eine statische Datei, falls das Paket resolvconf nicht installiert ist.

  • Falls das Paket installiert ist, ist dies ein symbolischer Link.
  • In beiden Fällen enthält es Informationen zur Initialisierung der Namensauflösungs-Routinen. Wenn das DNS zum Beispiel über die IP "192.168.11.1" erreichbar ist, enthält sie Folgendes:
nameserver 192.168.11.1

Das resolvconf-Paket macht "/etc/resolv.conf" zu einem symbolischen Link und verwaltet ihren Inhalt automatisch über die Hook-Skripte.

Bei PC-Arbeitsplatzrechnern in einer typischen LAN-Umgebung kann der Rechnername zusätzlich zu den grundlegenden files- und dns-Methoden auch über Multicast DNS (mDNS, Zeroconf) aufgelöst werden:

  • Avahi stellt ein Rahmenwerk für Multicast-DNS-Diensteabfragen auf Debian-Systemen bereit.
  • Es ist ein Äquivalent zu Apple Bonjour / Apple Rendezvous.
  • Das libnss-mdns-Plugin-Paket bietet Rechnernamensauflösung via mDNS für die GNU Name-Service-Switch-(NSS-)Funktionalität der GNU C-Bibliothek (glibc).
  • Die Datei "/etc/nsswitch.conf" sollte Einträge wie "hosts: files mdns4_minimal [NOTFOUND=return] dns mdns4" enthalten.
  • Rechnernamen, die mit der Pseudo-Top-Level Domain (TLD) ".local" enden, werden aufgelöst.
  • Die mDNS IPv4 link-lokale Multicast-Adresse "224.0.0.251" oder ihr IPv6-Äquivalent "FF02::FB" wird verwendet, um DNS-Abfragen für einen auf ".local" endenden Namen durchzuführen.

Rechnernamensauflösung über das veraltete NETBios over TCP/IP, das von älteren Windows-Systemen verwendet wurde, kann über die Installation des Pakets winbind realisiert werden.

  • Die "/etc/nsswitch.conf"-Datei sollte Einträge wie "hosts: files mdns4_minimal [NOTFOUND=return] dns mdns4 wins" enthalten, um diese Funktionalität zu aktivieren.
  • Moderne Windows-Systeme verwenden normalerweise die dns-Methode zur Rechnernamensauflösung.
Anmerkung
  • Achten Sie bei Auswahl von Domain-Namen, die nur im lokalen Netzwerk verwendet werden sollen, auf Namenskollisionen

Der Netzwerkschnittstellenname

Systemd verwendet "verlässlich vorhersagbare Namen (Predictable Network Interface Names)" wie "enp0s25".


Der Netzwerkadressbereich für das LAN

Wir wollen uns an die IPv4 32-Bit-Adressbereiche erinnern, die durch die rfc1918 für jede Klasse zur Verwendung in Local Area Networks (LANs) reserviert sind. Diese Adressen werden bestimmt nicht mit irgendwelchen Adressen im Internet kollidieren.

Anmerkung
IP-Adressen mit Doppelpunkten sind IPv6-Adressen, z. B. "::1" für localhost.
Liste der Netzwerkadressbereiche
Klasse Netzwerkadressen Netzmaske Netzmaske /Bits von Subnetzwerken
A 10.x.x.x 255.0.0.0 /8 1
B 172.16.x.x — 172.31.x.x 255.255.0.0 /16 16
C 192.168.0.x — 192.168.255.x 255.255.255.0 /24 256
Anmerkung
Wenn eine dieser Adressen einem Rechner zugewiesen ist, kann dieser Rechner das Internet nicht direkt erreichen, sondern muss ein Gateway verwenden, der als Proxy für verschiedene Dienste dient, oder er nutzt Network Address Translation (NAT). Ein Breitband-Router nutzt üblicherweise NAT für das Anwender-Netzwerk

Unterstützung für Netzwerkgeräte

Der größte Teil verfügbarer Netzwerk-Hardware wird durch das Debian-System unterstützt; es gibt einige Geräte, die laut DFSG nicht-freie Firmware für den Betrieb erfordern. Lesen Sie dazu Abschnitt 9.10.5, „Hardware-Treiber und Firmware“.

Moderne Netzwerkkonfiguration für Arbeitsplatzsysteme

Auf modernen Debian-Desktop-Systemen mit systemd erfolgt die Initialisierung von Netzwerkschnittstellen für die Loopback-Schnittstelle lo typischerweise durch "networking.service" und für andere Schnittstellen durch "NetworkManager.service".

Debian-Systeme können Netzwerkverbindungen über Software-Daemons wie NetworkManager (NM) (network-manager und zugehörige Pakete) verwalten.

  • Sie haben ihre eigenen grafischen GUI- und Befehlszeilen-Programme als Bedienoberfläche.
  • Sie haben ihre eigenen Daemons als Unterbau.
  • Sie erlauben eine einfache Verbindung Ihres Systems mit dem Internet.
  • Sie ermöglichen eine problemlose Verwaltung von kabelgebundenen und kabellosen Netzwerkkonfigurationen.
  • Sie erlauben uns, das Netzwerk unabhängig vom althergebrachten ifupdown zu konfigurieren.
Anmerkung
Verwenden Sie diese automatischen Netzwerkkonfigurations-Werkzeuge nicht für Server. Sie sind primär für die Nutzung auf Arbeitsplatzrechnern oder Laptops gedacht.

Diese modernen Werkzeuge müssen korrekt konfiguriert werden, um Konflikte mit dem ifupdown-Paket und seiner Konfigurationsdatei "/etc/network/interfaces" zu vermeiden.

Grafische Netzwerkkonfigurations-Werkzeuge

Offizielle Dokumentation für NM unter Debian ist in "/usr/share/doc/network-manager/README.Debian" verfügbar.

Grundsätzlich läuft die Netzwerkkonfiguration für Arbeitsplatzsysteme wie folgt ab:# Fügen Sie den Benutzer, der sich am Arbeitsplatz anmeldet, z. B. foo, mit folgendem Befehl zur Gruppe "netdev" hinzu (alternativ kann dies in modernen Arbeitsplatzumgebungen wie GNOME oder KDE auch automatisch über D-bus erledigt werden):
$ sudo adduser foo netdev

  1. Halten Sie die Konfiguration in "/etc/network/interfaces" so einfach wie hier:
    auto lo
    iface lo inet loopback
  2. Starten Sie NM mit folgendem Befehl neu:
    $ sudo systemctl restart network-manager
  3. Konfigurieren Sie Ihr Netzwerk über die grafische GUI-Oberfläche.
Anmerkung
Um Konflikte mit ifupdown zu vermeiden, werden nur Schnittstellen, die nicht in "/etc/network/interfaces" aufgelistet sind, von NM verwaltet.
Tipp
Wenn Sie die Fähigkeiten von NM erweitern möchten, suchen Sie nach entsprechenden Plugin-Modulen und zusätzlichen Paketen wie network-manager-openconnect, network-manager-openvpn-gnome, network-manager-pptp-gnome, mobile-broadband-provider-info, gnome-bluetooth usw.

Moderne Netzwerkkonfiguration ohne grafische Oberfläche

Unter systemd kann das Netzwerk stattdessen in /etc/systemd/network/ konfiguriert werden. Lesen Sie dazu systemd-resolved(8), resolved.conf(5) und systemd-networkd(8).

Dies ermöglicht eine moderne Netzwerkkonfiguration auch ohne grafische Oberfläche.

Eine DHCP-Client-Konfiguration kann durch Erzeugen von "/etc/systemd/network/dhcp.network" eingerichtet werden, z. B. mit:

[Match]
Name=en*

[Network]
DHCP=yes

Eine statische Netzwerkkonfiguration richten Sie über "/etc/systemd/network/static.network" ein, wie hier:

[Match]
Name=en*

[Network]
Address=192.168.0.15/24
Gateway=192.168.0.1

Netzwerkkonfiguration auf unterster Ebene

Für Netzwerkkonfiguration über die Konsole können Sie unter Linux die iproute2-Programme (ip(8), …) verwenden.


iproute2-Befehle

Die iproute2-Befehle bieten vollwertige Funktionalität auf der untersten Ebene der Netzwerkkonfiguration. Hier eine Tabelle zur Gegenüberstellung von veralteten net-tools-Befehlen und neuen iproute2- und anderen Befehlen.

Gegenüberstellung von net-tools- und iproute2-Befehlen
net-tools (veraltet) iproute2 usw. (neu) Beeinflussung
ifconfig(8) ip addr Protokoll-Adresse (IP oder IPv6) eines Gerätes
route(8) ip route Eintrag in der Routing-Tabelle
arp(8) ip neigh ARP- oder NDISC-Cache-Eintrag
ipmaddr ip maddr Multicast-Adresse
iptunnel ip tunnel Tunnel über IP
nameif(8) ifrename(8) Netzwerkschnittstellen basierend auf MAC-Adressen benennen
mii-tool(8) ethtool(8) Einstellungen von Ethernet-Geräten

Lesen Sie ip(8) und das IPROUTE2 Utility Suite Howto.


Sichere Basis-Netzwerkoperationen

Sie können die folgenden Netzwerkbefehle der untersten Ebene problemlos verwenden, da sie die Netzwerkkonfiguration nicht verändern

Basis-Netzwerkbefehle
Befehl Beschreibung
ip addr show Verbindungs- und Adressstatus von aktiven Schnittstellen anzeigen
route -n Vollständige Routing-Tabelle mit numerischen Adressen anzeigen
ip route show Vollständige Routing-Tabelle mit numerischen Adressen anzeigen
arp Aktuellen Inhalt der ARP-Cache-Tabellen anzeigen
ip neigh Aktuellen Inhalt der ARP-Cache-Tabellen anzeigen
plog Logdaten des PPP-Daemons anzeigen
ping yahoo.com Internet-Verbindung zu "yahoo.com" überprüfen
whois yahoo.com Überprüfen, wer "yahoo.com" in der Domain-Datenbank registriert hat
traceroute yahoo.com Verbindung zu "yahoo.com" durch das Internet verfolgen
tracepath yahoo.com Verbindung zu "yahoo.com" durch das Internet verfolgen
mtr yahoo.com Verbindung zu "yahoo.com" durch das Internet verfolgen (wiederholt)
dig [@dns-server.com] example.com [{a|mx|any}] DNS-Einträge von "example.com" laut den Daten von "dns-server.com" auf einen "a"-, "mx"- oder "any"-Eintrag überprüfen
iptables -L -n Paketfilter überprüfen
netstat -a Alle offenen Ports finden
netstat -l --inet Ports finden, die auf eine Verbindung warten
netstat -ln --tcp TCP-Ports finden, die auf eine Verbindung warten (numerisch)
dlint example.com DNS-Zonen-Informationen von "example.com" überprüfen
Tipp
Einige dieser Basisbefehle zur Netzwerkkonfiguration sind in "/sbin/" abgelegt. Sie müssen unter Umständen den vollständigen Pfad, wie z. B. "/sbin/ifconfig" angeben oder "/sbin" zur Variable "$PATH" in Ihrer "~/.bashrc"-Datei hinzufügen

Netzwerkoptimierung

Die grundsätzliche Netzwerkoptimierung liegt außerhalb des Rahmens dieser Dokumentation. Ich erwähne hier nur Dinge, die für Anwender-typische Verbindungen passend sind

Werkzeugen zur Netzwerkoptimierung
Pakete Popcon Größe Beschreibung
iftop V:7, I:112 97 Informationen zur Bandbreitennutzung einer Netzwerkschnittstelle anzeigen
iperf V:3, I:52 322 Werkzeug zur IP-Bandbreiten-Messung
ifstat V:0, I:8 59 InterFace STATistics Monitoring (Netzwerkschnittstellen-Statistik/-Überwachung)
bmon V:1, I:17 146 Portierbarer Bandbreitenmonitor und Geschwindigkeitsrechner
ethstatus V:0, I:4 40 Skript, das schnell den Durchsatz eines Netzwerkgerätes messen kann
bing V:0, I:1 80 Empirisch stochastischer Bandbreitentester
bwm-ng V:1, I:17 90 Kleiner und einfacher konsolenbasierter Bandbreitenmonitor
ethstats V:0, I:0 23 Konsolenbasierter Ethernet-Statistikmonitor
ipfm V:0, I:0 78 Bandbreitenanalyse-Werkzeug

Die optimale MTU finden

NM setzt den optimalen Wert für die Maximum Transmission Unit (MTU) normalerweise automatisch.

In speziellen Fällen möchten Sie die MTU jedoch vielleicht händisch setzen, nachdem Sie mit ping(8) und seiner Option "-M do" experimentiert haben; Sie haben damit die Möglichkeit, ein ICMP-Paket mit verschiedenen Paketgrößen zu verschicken. MTU ist die größte Paketgröße, bei der das Paket noch erfolgreich ohne Fragmentierung verschickt werden kann plus 28 Byte für die IPv4- bzw. 48 Byte für die IPv6-Adresse. In folgendem Beispiel wurde für eine IPv4-Verbindung eine MTU von 1460 ermittelt und für IPv6 eine MTU von 1500:

$ ping -4 -c 1 -s $((1500-28)) -M do www.debian.org
PING (149.20.4.15) 1472(1500) bytes of data.
ping: local error: message too long, mtu=1460

--- ping statistics ---
1 packets transmitted, 0 received, +1 errors, 100% packet loss, time 0ms
$ ping -4 -c 1 -s $((1460-28)) -M do www.debian.org
PING (130.89.148.77) 1432(1460) bytes of data.
1440 bytes from klecker-misc.debian.org (130.89.148.77): icmp_seq=1 ttl=50 time=325 ms

--- ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 325.318/325.318/325.318/0.000 ms
$ ping -6 -c 1 -s $((1500-48)) -M do www.debian.org
PING www.debian.org(mirror-csail.debian.org (2603:400a:ffff:bb8::801f:3e)) 1452 data bytes
1460 bytes from mirror-csail.debian.org (2603:400a:ffff:bb8::801f:3e): icmp_seq=1 ttl=47 time=191 ms

--- www.debian.org ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 191.332/191.332/191.332/0.000 ms

Dies ist das Path MTU (PMTU) Discovery-Verfahren (RFC1191) und der Befehl tracepath(8) kann dies automatisieren.

Grundregeln für den optimalen MTU-Wert
Netzwerkumgebung MTU Argumentation
Einwahlverbindung (IP: PPP) 576 Standard
Ethernet-Verbindung (IP: DHCP oder fest) 1500 Standard und vorgegeben

Zusätzlich zu diesen Grundregeln sollten Sie Folgendes wissen:

  • Jegliche Nutzung von Tunneling-Methoden (VPN usw.) kann aufgrund des Overheads den optimalen MTU-Wert reduzieren.
  • Der MTU-Wert sollte den über die experimentelle Methode ermittelten PMTU-Wert nicht überschreiten.
  • Ein größerer MTU-Wert ist grundsätzlich besser, wenn andere Einschränkungen greifen.

Die Maximum Segment Size (MSS) wird als alternative Messmethode für die Paketgröße verwendet. Der Zusammenhang zwischen MSS und MTU ist wie folgt:

  • MSS = "MTU - 40" bei IPv4
  • MSS = "MTU - 60" bei IPv6
Anmerkung
Bei Netzwerkoptimierung mittels iptables(8) (lesen Sie dazu auch Abschnitt 5.6, „Die Netfilter-Infrastruktur“) kann die Paketgröße über die MSS begrenzt werden; dies ist für einen Router nützlich. Lesen Sie den Abschnitt bezüglich "TCPMSS" in iptables(8)

WAN-TCP-Optimierung

Der TCP-Durchsatz kann über die Anpassung von Parametern zur TCP-Puffergröße maximiert werden, wie es die Anleitungen "TCP Tuning Guide" und "TCP Tuning" für modernes WAN mit hoher Bandbreite und hoher Latenz beschreiben. Das soll hierzu genügen; die aktuellen Debian-Standardeinstellungen funktionieren für mein LAN mit seiner Verbindung zum sehr schnellen 1G bps FFTP-Dienst sehr gut

Netfilter-Infrastruktur

Netfilter stellt eine Infrastruktur für Stateful Packet Inspection (SPI, zustandsorientierte Paketüberprüfung) und Network Address Translation (NAT) über Module des Linux-Kernels (lesen Sie hierzu Abschnitt 3.8.1, „Die Kernel-Modul-Initialisierung“) zur Verfügung.

Firewall-Werkzeuge
Pakete Popcon Größe Beschreibung
iptables V:306, I:942 2521 Administrationswerkzeuge für netfilter (iptables(8) für IPv4, ip6tables(8) für IPv6)
arptables V:0, I:2 96 Administrationswerkzeuge für netfilter (arptables(8) für ARP)
ebtables V:14, I:33 265 Administrationswerkzeuge für netfilter (ebtables(8) für Ethernet-Bridging-Betrieb)
iptstate V:0, I:3 116 Fortlaufende Überwachung des netfilter-Status (ähnlich zu top(1))
shorewall-init V:0, I:0 68 Initialisierung der Shoreline Firewall
shorewall V:5, I:11 2458 Erzeugung von netfilter-Konfigurationsdateien für Shoreline Firewall
shorewall-lite V:0, I:0 65 Erzeugung von netfilter-Konfigurationsdateien für Shoreline Firewall (abgespeckte Version)
shorewall6 V:1, I:2 779 Erzeugung von netfilter-Konfigurationsdateien für Shoreline Firewall (IPv6-Version)
shorewall6-lite V:0, I:0 64 Erzeugung von netfilter-Konfigurationsdateien für Shoreline Firewall (abgespeckte IPv6-Version)

Das vorherrschende Nutzerprogramm für netfilter ist iptables(8). Sie können netfilter von Hand interaktiv über die Shell konfigurieren, seinen Status mit iptables-save(8) sichern und beim Systemstart über ein Init-Skript mittels iptables-restore(8) wiederherstellen.

Konfigurations-Hilfsskripte wie shorewall vereinfachen diesen Prozess.

Sie finden Dokumentation unter http://www.netfilter.org/documentation/ oder in "/usr/share/doc/iptables/html/":

"[Tipp]" Tipp
Obwohl für Linux 2.4 geschrieben, sind sowohl der iptables(8)-Befehl wie auch die Netfilter-Kernel-Funktionalität für die Linux-Kernel-Serien 2.6 und 3.x passend.

Quelle: https://www.debian.org/doc/manuals/debian-reference/ch05.de.html