Nc: Unterschied zwischen den Versionen
Zeile 14: | Zeile 14: | ||
= Installation = | = Installation = | ||
= Syntax = | = Syntax = | ||
$ '''nc [ | $ '''nc [OPTIONEN] [destination] [port] | ||
== Optionen == | == Optionen == |
Version vom 10. Mai 2022, 10:23 Uhr
nc (netcat) — arbitrary TCP and UDP connections and listens
Beschreibung
The nc (or netcat) utility is used for just about anything under the sun involving TCP, UDP, or UNIX-domain sockets.
- It can open TCP connections, send UDP packets, listen on arbitrary TCP and UDP ports, do port scanning, and deal with both IPv4 and IPv6.
- Unlike telnet(1), nc scripts nicely, and separates error messages onto standard error instead of sending them to standard output, as telnet(1) does with some.
- Common uses
- simple TCP proxies
- shell-script based HTTP clients and servers
- network daemon testing
- a SOCKS or HTTP ProxyCommand for ssh(1)
Installation
Syntax
$ nc [OPTIONEN] [destination] [port]
Optionen
Option | Bescheibung |
---|---|
-4 | Use IPv4 addresses only. |
-6 | Use IPv6 addresses only. |
-b | Allow broadcast. |
-C | Send CRLF as line-ending.
|
-D | Enable debugging on the socket. |
-d | Do not attempt to read from stdin. |
-F | Pass the first connected socket using sendmsg(2) to stdout and exit.
|
-h | Print out the nc help text and exit. |
-I length | Specify the size of the TCP receive buffer. |
-i interval | Sleep for interval seconds between lines of text sent and received.
|
-k | When a connection is completed, listen for another one.
|
-l | Listen for an incoming connection rather than initiating a connection to a remote host.
|
-M ttl | Set the TTL / hop limit of outgoing packets. |
-m minttl | Ask the kernel to drop incoming packets whose TTL / hop limit is under minttl. |
-N | shutdown(2) the network socket after EOF on the input.
|
-n | Do not perform domain name resolution.
|
-O length | Specify the size of the TCP send buffer. |
-P proxy_username | Specifies a username to present to a proxy server that requires authentication.
|
-p source_port | Specify the source port nc should use, subject to privilege restrictions and availability. |
-q seconds | after EOF on stdin, wait the specified number of seconds and then quit.
|
-r | Choose source and/or destination ports randomly instead of sequentially within a range or in the order that the system assigns them. |
-S | Enable the RFC 2385 TCP MD5 signature option. |
-s sourceaddr | Set the source address to send packets from, which is useful on machines with multiple interfaces.
|
-T keyword | Change the IPv4 TOS/IPv6 traffic class value.
|
-t | Send RFC 854 DON'T and WON'T responses to RFC 854 DO and WILL requests.
|
-U | Use UNIX-domain sockets.
|
-u | Use UDP instead of TCP.
|
-V rtable | Set the routing table to be used. |
-v | Produce more verbose output. |
-W recvlimit | Terminate after receiving recvlimit packets from the network. |
-w timeout | Connections which cannot be established or are idle timeout after timeout seconds.
|
-X proxy_protocol | Use proxy_protocol when talking to the proxy server.
|
-x proxy_address[:port] | Connect to destination using a proxy at proxy_address and port.
|
-Z | DCCP mode. |
-z | Only scan for listening daemons, without sending any data to them.
|
Parameter
Parameter | Bedeutung |
---|---|
destination | can be a numerical IP address or a symbolic hostname (unless the -n option is given).
|
port | can be specified as a numeric port number or as a service name.
|
Anwendungen
Client/Server-Modell
It is quite simple to build a very basic client/server model using nc.
- On one console, start nc listening on a specific port for a connection.
- For example:
$ nc -l 1234
nc is now listening on port 1234 for a connection.
- On a second console (or a second machine), connect to the machine and port being listened on:
$ nc -N 127.0.0.1 1234
There should now be a connection between the ports.
- Anything typed at the second console will be concatenated to the first, and vice-versa.
- After the connection has been set up, nc does not really care which side is being used as a ‘server’ and which side is being used as a ‘client’.
- The connection may be terminated using an EOF (‘^D’), as the -N flag was given.
There is no -c or -e option in this netcat, but you still can execute a command after connection being established by redirecting file descriptors.
- Be cautious here because opening a port and let anyone connected execute arbitrary command on your site is DANGEROUS.
- If you really need to do this, here is an example:
On ‘server’ side:
$ rm -f /tmp/f; mkfifo /tmp/f $ cat /tmp/f | /bin/sh -i 2>&1 | nc -l 127.0.0.1 1234 > /tmp/f
On ‘client’ side:
$ nc host.example.com 1234 $ (shell prompt from host.example.com)
By doing this, you create a fifo at /tmp/f and make nc listen at port 1234 of address 127.0.0.1 on ‘server’ side, when a ‘client’ establishes a connec‐ tion successfully to that port, /bin/sh gets executed on ‘server’ side and the shell prompt is given to ‘client’ side.
When connection is terminated, nc quits as well.
- Use -k if you want it keep listening, but if the command quits this option won't restart it or keep nc running.
- Also don't forget to remove the file descriptor once you don't need it anymore:
$ rm -f /tmp/f
Datenübertragung
The example in the previous section can be expanded to build a basic data transfer model.
- Any information input into one end of the connection will be output to the other end, and input and output can be easily captured in order to emulate file transfer.
Start by using nc to listen on a specific port, with output captured into a file:
$ nc -l 1234 > filename.out
Using a second machine, connect to the listening nc process, feeding it the file which is to be transferred:
$ nc -N host.example.com 1234 < filename.in
After the file has been transferred, the connection will close automatically.
Einen Server anprechen
It is sometimes useful to talk to servers “by hand” rather than through a user interface.
- It can aid in troubleshooting, when it might be necessary to verify what data a server is sending in response to commands issued by the client.
- For example, to retrieve the home page of a web site:
$ printf "GET / HTTP/1.0\r\n\r\n" | nc host.example.com 80
Note that this also displays the headers sent by the web server.
- They can be filtered, using a tool such as sed(1), if necessary.
More complicated examples can be built up when the user knows the format of requests required by the server.
- As another example, an email may be sub‐
mitted to an SMTP server using:
$ nc [-C] localhost 25 << EOF HELO host.example.com MAIL FROM:<user@host.example.com> RCPT TO:<user2@host.example.com> DATA Body of email. . QUIT EOF
Post-Scanning
It may be useful to know which ports are open and running services on a target machine.
- The -z flag can be used to tell nc to report open ports,
rather than initiate a connection.
- Usually it's useful to turn on verbose output to stderr by use this option in conjunction with -v option.
For example:
$ nc -zv host.example.com 20-30 Connection to host.example.com 22 port [tcp/ssh] succeeded! Connection to host.example.com 25 port [tcp/smtp] succeeded!
The port range was specified to limit the search to ports 20 - 30, and is scanned by increasing order (unless the -r flag is set).
You can also specify a list of ports to scan, for example:
$ nc -zv host.example.com http 20 22-23 nc: connect to host.example.com 80 (tcp) failed: Connection refused nc: connect to host.example.com 20 (tcp) failed: Connection refused Connection to host.example.com port [tcp/ssh] succeeded! nc: connect to host.example.com 23 (tcp) failed: Connection refused
The ports are scanned by the order you given (unless the -r flag is set).
Alternatively, it might be useful to know which server software is running, and which versions.
- This information is often contained within the greet‐
ing banners.
- In order to retrieve these, it is necessary to first make a connection, and then break the connection when the banner has been retrieved.
This can be accomplished by specifying a small timeout with the -w flag, or perhaps by issuing a "QUIT" command to the server:
$ echo "QUIT" | nc host.example.com 20-30 SSH-1.99-OpenSSH_3.6.1p2 Protocol mismatch. 220 host.example.com IMS SMTP Receiver Version 0.84 Ready
Beispiele
Open a TCP connection to port 42 of host.example.com, using port 31337 as the source port, with a timeout of 5 seconds:
$ nc -p 31337 -w 5 host.example.com 42
Open a UDP connection to port 53 of host.example.com:
$ nc -u host.example.com 53
Open a TCP connection to port 42 of host.example.com using 10.1.2.3 as the IP for the local end of the connection:
$ nc -s 10.1.2.3 host.example.com 42
Create and listen on a UNIX-domain stream socket:
$ nc -lU /var/tmp/dsocket
Connect to port 42 of host.example.com via an HTTP proxy at 10.2.3.4, port 8080.
- This example could also be used by ssh(1); see the ProxyCommand di‐
rective in ssh_config(5) for more information.
$ nc -x10.2.3.4:8080 -Xconnect host.example.com 42
The same example again, this time enabling proxy authentication with username “ruser” if the proxy requires it:
$ nc -x10.2.3.4:8080 -Xconnect -Pruser host.example.com 42
CAVEATS
UDP port scans using the -uz combination of flags will always report success irrespective of the target machine's state.
- However, in conjunction with a traffic sniffer either on the target machine or an intermediary device, the -uz combination could be useful for communications diagnostics.
- Note that the amount of UDP traffic generated may be limited either due to hardware resources and/or configuration settings.
Sicherheit
Dokumentation
RFC
Man-Pages
Info-Pages
Projekt-Homepage
Links
Siehe auch
- cat(1)
- ssh(1)
Weblinks
Einzelnachweise
Testfragen
Testfrage 1
Testfrage 2
Testfrage 3
Testfrage 4
Testfrage 5