|
|
Zeile 183: |
Zeile 183: |
|
| |
|
| = Wikipedia = | | = Wikipedia = |
| == Datenübertragung ==
| |
| [[Datei:Tcp daten.svg|mini|Abb. 6: Segmentierung der Nutzdaten]]
| |
|
| |
| === TCP-/IP-Segment-Größe ===
| |
| Ein TCP-Segment hat typischerweise eine Größe von maximal 1500 Bytes. Ein TCP-Segment muss jedoch in die darunter liegende Übertragungsschicht passen, das [[Internetprotokoll]] (IP); siehe hierzu auch [[Maximum Transmission Unit]] (MTU).
| |
|
| |
| [[IP-Paket]]e wiederum sind zwar theoretisch bis 65.535 Bytes (64 [[Kibibyte|KiB]]) spezifiziert, werden aber selbst meist über [[Ethernet]] übertragen, und bei Ethernet ist die Größe der (Layer-3-)Nutzdaten (wenn man von ''[[Jumbo Frames]]'' absieht) auf 64 (ggf. inklusive Padding) bis 1500 Bytes festgelegt. TCP- und IP-Protokoll definieren jeweils einen Header von 20 Bytes Größe. Für die (Applikations-)Nutzdaten bleiben in einem TCP/IP-Paket also 1460 Bytes (= 1500 Bytes Ethernet-[Nutzdaten] − 20 Bytes Headerdaten TCP − 20 Bytes Headerdaten IP) übrig. Da die meisten Internet-Anschlüsse [[Digital Subscriber Line|DSL]] verwenden, kommt dort zusätzlich noch das [[Point-to-Point Protocol|Point-to-Point Protocol (PPP)]] zwischen IP und Ethernet zur Anwendung, was weitere 8 Bytes für den PPP-Rahmen verbraucht. Die Nutzdaten reduzieren sich also auf insgesamt 1500 − 20 − 20 − 8 = 1452 Bytes [[Maximum Segment Size|MSS]] (Maximum Segment Size). Dies entspricht einer maximalen Nutzdatenrate von 96,8 %.
| |
|
| |
| === Aufteilen der Anwendungsdaten auf TCP-/IP-Segmente ===
| |
| Empfänger und Sender einigen sich vor dem Datenaustausch über das Options-Feld auf die Größe der [[Maximum Segment Size|MSS]]. Die Anwendung, die Daten versenden möchte, etwa ein Webserver, legt zum Beispiel einen 7 Kilobyte großen Datenblock im Puffer ab.
| |
| Um mit einem 1460 Byte großen Nutzdatenfeld 7 Kilobyte Daten zu versenden, teilt die TCP-Software die Daten auf mehrere Pakete auf, fügt einen TCP-Header hinzu und versendet die TCP-Segmente. Dieser Vorgang wird Segmentierung genannt. Der Datenblock im Puffer wird in fünf Segmente aufgeteilt (siehe Abb. 6). Jedes Segment erhält durch die TCP-Software einen TCP-Header. Die TCP-Segmente werden nacheinander abgeschickt. Diese kommen beim Empfänger nicht notwendigerweise in derselben Reihenfolge an, in der sie versendet wurden, da im Internet unter Umständen jedes TCP-Segment einen anderen Weg nimmt. Damit die TCP-Software im Empfänger die Segmente wieder sortieren kann, ist jedes Segment nummeriert. Bei der Zuordnung der Segmente im Empfänger wird die Sequenznummer herangezogen.
| |
|
| |
| [[Datei:Tcp transfer.png|mini|Abb. 7: Beispiel eines Datentransfers]]
| |
|
| |
| Die TCP-Software des Empfängers bestätigt diejenigen TCP-Segmente, die einwandfrei (das heißt mit korrekter Prüfsumme) angekommen sind. Andernfalls werden die Pakete neu angefordert.
| |
|
| |
| === Beispiel einer TCP-/IP-Datenübertragung ===
| |
| Der Sender schickt sein erstes TCP-Segment mit einer Sequenznummer SEQ=1 (variiert) und einer Nutzdatenlänge von 1460 Bytes an den Empfänger. Der Empfänger bestätigt es mit einem TCP-Header ohne Daten mit ACK=1461 und fordert damit das zweite TCP-Segment ab dem Byte Nummer 1461 beim Sender an. Dieser schickt es dann mit einem TCP-Segment und SEQ=1461 an den Empfänger. Dieser bestätigt es wieder mit einem ACK=2921 und so weiter. Der Empfänger braucht nicht jedes TCP-Segment zu bestätigen, wenn diese zusammenhängend sind. Empfängt er die TCP-Segmente 1–5, so braucht er nur das letzte TCP-Segment zu bestätigen. Fehlt zum Beispiel das TCP-Segment 3, weil es verlorengegangen ist, so kann er nur die 1 und die 2 bestätigen, 4 und 5 jedoch noch nicht. Da der Sender keine Bestätigung für die 3 bekommt, läuft sein Timer ab, und er verschickt die 3 noch einmal. Kommt die 3 beim Empfänger an, so bestätigt er alle fünf TCP-Segmente, sofern beide Seiten die TCP-Option SACK (Selective ACK) unterstützen. Der Sender startet für jedes TCP-Segment, welches er auf die Reise schickt, einen Retransmission Timer.
| |
|
| |
| === Retransmission Timer ===
| |
| Zur Feststellung, wann ein Paket im Netzwerk verloren gegangen ist, wird vom Sender ein [[Timeout (Netzwerktechnik)|Timeout]] verwendet, bis zu dem das ACK der Gegenseite eingetroffen sein muss. Ein zu niedriger Timeout bewirkt, dass Pakete, die eigentlich korrekt angekommen sind, wiederholt werden; ein zu hoher Timeout bewirkt, dass bei tatsächlichen Verlusten das zu wiederholende Paket unnötig spät gesendet wird.
| |
| Aufgrund unterschiedlicher Laufzeiten der zugrundeliegenden IP-Pakete ist nur ein dynamisch an die Verbindung angepasster Timer sinnvoll. Die Details werden in RFC 6298<ref>[https://tools.ietf.org/html/rfc6298 RFC 6298 - Computing TCP's Retransmission Timer]</ref> wie folgt festgelegt:
| |
| * Der Timeout (RTO = Retransmission Timeout) berechnet sich aus zwei beim Sender mitgeführten Statusvariablen:
| |
| ** der geschätzten [[Round Trip Time]] (SRTT = Smoothed RTT)
| |
| ** sowie deren [[Varianz (Stochastik)|Varianz]] (RTTVAR).
| |
| * Initial wird geschätzt, dass RTO = 1s (um die Kompatibilität mit der älteren Version des Dokuments zu schaffen sind auch Werte > 1s möglich.)
| |
| * Nach der Messung der RTT des ersten gesendeten Pakets wird gesetzt:
| |
| ** SRTT:= RTT
| |
| ** RTTVAR:= 0,5 * RTT
| |
| ** RTO:= RTT + 4 * RTTVAR (Sollte 4 * RTTVAR kleiner sein als die Messgenauigkeit des Timers, wird stattdessen diese addiert.)
| |
| * Bei jeder weiteren Messung der RTT' werden die Werte aktualisiert (hierbei muss RTTVAR vor SRTT berechnet werden):
| |
| ** RTTVAR:= (1-β) * RTTVAR + β * |SRTT – RTT'| (Auch die Varianz wird mit einem Faktor β geglättet; da die Varianz eine durchschnittliche Abweichung angibt (welche immer positiv ist), wird hier der Betrag der Abweichung von geschätzter und tatsächlicher RTT' verwendet, nicht die einfache Differenz. Es wird empfohlen, β = 1/4 zu wählen.)
| |
| ** SRTT:= (1-α) * SRTT + α * RTT' (Es wird somit nicht einfach die neue RTT' gesetzt, sondern diese mit einem Faktor α geglättet. Es wird empfohlen, α = 1/8 zu wählen.)
| |
| ** RTO:= SRTT + 4 * RTTVAR (Sollte 4*RTTVAR kleiner sein als die Messgenauigkeit des Timers, wird stattdessen diese addiert. Für den RTO gilt – unabhängig von der Berechnung – ein Minimalwert von 1 s; es darf auch ein Maximalwert vergeben werden, sofern dieser mindestens 60 s beträgt.)
| |
|
| |
| Durch die Wahl von 2er-Potenzen (4 bzw. 1/2, 1/4 etc.) als Faktoren, können die Berechnungen in der Implementierung durch einfache [[Bitweiser Operator#Bitweise Verschiebungen|Shift-Operationen]] realisiert werden.
| |
|
| |
| Zur Messung der RTT muss der [[Karn-Algorithmus]] von [[Phil Karn]] verwendet werden; d. h., es werden nur diejenigen Pakete zur Messung verwendet, deren Bestätigung eintrifft, ohne dass das Paket zwischendurch erneut gesendet wurde. Der Grund dafür ist, dass bei einer erneuten Übertragung nicht klar wäre, welches der wiederholt gesendeten Pakete tatsächlich bestätigt wurde, so dass eine Aussage über die RTT eigentlich nicht möglich ist.
| |
|
| |
| Wurde ein Paket nicht innerhalb des Timeouts bestätigt, so wird der RTO verdoppelt (sofern er noch nicht die optionale obere Schranke erreicht hat). In diesem Fall dürfen (ebenfalls optional) die für SRTT und RTTVAR gefundenen Werte auf ihren Anfangswert zurückgesetzt werden, da sie möglicherweise die Neuberechnung der RTO stören könnten.
| |
|
| |
| === Zusammenhang von Flusssteuerung und Staukontrolle ===
| |
| In den folgenden zwei Abschnitten werden die TCP-Konzepte zur Flusssteuerung und Staukontrolle (oder Überlaststeuerung) erläutert. Dabei werden das ''[[Sliding Window]]'' und das ''[[Congestion Window]]'' eingeführt. Der Sender wählt als tatsächliche Sendefenstergröße das Minimum aus beiden Fenstern. Um eine zuverlässige Datenübertragung durch Sendewiederholungen zu gewährleisten, werden sogenannte ''[[ARQ-Protokoll]]e'' (englisch Automatic Repeat reQuest, dt. Automatische Wiederholungsanfrage) eingesetzt.
| |
|
| |
| === Flusssteuerung ===
| |
| [[Datei:Sliding window.svg|mini|Abb. 8: Sliding Window]]
| |
|
| |
| Da die Anwendung Daten aus dem Puffer liest, ändert sich der Füllstand des Puffers ständig. Deshalb ist es notwendig, den Datenfluss dem Füllstand entsprechend zu steuern. Dies geschieht mit dem ''[[Sliding Window]]'' und dessen Größe.
| |
| Den Puffer des Senders erweitern wir, wie in Abb. 8 zu sehen, auf 10 Segmente. In der Abb. 8a werden gerade die Segmente 1–5 übertragen. Die Übertragung ist vergleichbar mit Abb. 7. Obwohl der Puffer des Empfängers in Abb. 7 am Ende voll ist, fordert er mit ACK=7301 die nächsten Daten ab dem Byte 7301 beim Sender an. Dies hat zur Folge, dass das nächste TCP-Segment vom Empfänger nicht mehr verarbeitet werden kann. Ausnahmen sind jedoch TCP-Segmente mit gesetztem URG-Flag. Mit dem [[RWin|Window]]-Feld kann er dem Sender mitteilen, dass er keine Daten mehr verschicken soll. Dies geschieht, indem er im Window-Feld den Wert Null einträgt (Zero Window). Der Wert Null entspricht dem freien Speicherplatz im Puffer. Die Anwendung des Empfängers liest nun die Segmente 1–5 aus dem Puffer, womit wieder ein Speicherplatz von 7300 Byte frei ist. Damit kann er die restlichen Segmente 6–10 mit einem TCP-Header, der die Werte SEQ=1, ACK=7301 und Window=7300 enthält, beim Sender anfordern. Der Sender weiß nun, dass er maximal fünf TCP-Segmente an den Empfänger schicken kann, und verschiebt das Window um fünf Segmente nach rechts (siehe Abb. 8b). Die Segmente 6–10 werden nun alle zusammen als ''Burst'' verschickt. Kommen alle TCP-Segmente beim Empfänger an, so quittiert er sie mit SEQ=1 und ACK=14601 und fordert die nächsten Daten an.
| |
|
| |
| ; Silly Window Syndrome:
| |
| : Der Empfänger sendet ein ''Zero Window'' an den Sender, da sein Puffer voll ist. Die Anwendung beim Empfänger liest allerdings nur zwei Byte aus dem Puffer. Der Empfänger schickt einen TCP-Header mit Window=2 (Window Update) an den Sender und fordert gleichzeitig die zwei Byte an. Der Sender kommt der Aufforderung nach und schickt die zwei Byte in einem 42 Byte großen Paket (mit IP-Header und TCP-Header) an den Empfänger. Damit ist der Puffer des Empfängers wieder voll, und er schickt wieder ein ''Zero Window'' an den Sender. Die Anwendung liest jetzt zum Beispiel hundert Byte aus dem Puffer. Der Empfänger schickt wieder einen TCP-Header mit einem kleinen Window-Wert an den Sender. Dieses Spiel setzt sich immer wieder fort und verschwendet Bandbreite, da nur sehr kleine Pakete versandt werden. Clarks Lösung ist, dass der Empfänger ein ''Zero Window'' sendet und so lange mit dem ''Window Update'' warten soll, bis die Anwendung mindestens die maximale Segmentgröße (maximum segment size, in unseren bisherigen Beispielen 1460 Byte) aus dem Puffer gelesen hat oder der Puffer halbleer ist – je nachdem, was zuerst eintritt (Dave Clark, 1982). Auch der Sender kann zu kleine Pakete abschicken und dadurch Bandbreite verschwenden. Dieser Umstand wird mit dem [[Nagle-Algorithmus]] beseitigt. Deswegen ergänzt er sich mit Clarks Lösung.
| |
|
| |
| === Überlaststeuerung/Staukontrolle (Congestion Control) ===
| |
| Im Internet, in dem viele Netze mit unterschiedlichen Eigenschaften verbunden werden, ist Datenverlust einzelner Pakete durchaus normal. Wird eine Verbindung stark belastet, werden immer mehr Pakete verworfen, die entsprechend wiederholt werden müssen. Durch die Wiederholung steigt wiederum die Belastung, ohne geeignete Maßnahmen kommt es zu einem Datenstau.
| |
|
| |
| Die Verlustrate wird von einem [[Internet Protocol|IP-Netzwerk]] ständig beobachtet. Abhängig von der Verlustrate wird die Senderate durch geeignete [[Algorithmus|Algorithmen]] beeinflusst: Normalerweise wird eine TCP/IP-Verbindung langsam gestartet (Slow-Start) und die Senderate schrittweise erhöht, bis es zum Datenverlust kommt. Ein Datenverlust verringert die Senderate, ohne Verlust wird sie wiederum erhöht. Insgesamt nähert sich die Datenrate so zunächst dem jeweiligen zur Verfügung stehenden Maximum und bleibt dann ungefähr dort. Eine Überbelastung wird vermieden.
| |
|
| |
| ==== Algorithmus zur Überlaststeuerung ====
| |
| Gehen bei einer bestimmten Fenstergröße Pakete verloren, kann das festgestellt werden, wenn der Sender innerhalb einer bestimmten Zeit ([[Timeout (Netzwerktechnik)|Timeout]]) keine Bestätigung (ACK) erhält. Man muss davon ausgehen, dass das Paket aufgrund zu hoher Netzlast von einem [[Router]] im Netz verworfen wurde. Das heißt, der Puffer eines Routers ist vollgelaufen; es handelt sich hier sozusagen um einen Stau im Netz. Um den Stau aufzulösen, müssen alle beteiligten Sender ihre Netzlast reduzieren. Dazu werden im RFC 2581 vier Algorithmen definiert: ''slow start'', ''congestion avoidance'', ''fast retransmit'' und ''fast recovery'', wobei ''slow start'' und ''congestion avoidance'' zusammen verwendet werden. Die zwei Algorithmen ''fast retransmit'' und ''fast recovery'' werden auch zusammen verwendet und sind eine Erweiterung der Algorithmen ''slow start'' und ''congestion avoidance''.
| |
|
| |
| ==== {{Anker|Slow Start}} Slow Start und Congestion Avoidance ====
| |
| [[Datei:TCPSlowStartundCongestionAvoidance.svg|mini|Grafische Darstellung des Slow-Start-Algorithmus]]
| |
| Zu Beginn einer Datenübertragung dient der Slow-Start-Algorithmus zur Bestimmung des ''congestion window'' (wörtlich: Überlastfenster), um einer möglichen Überlastsituation vorzubeugen. Man möchte Staus vermeiden, und da die momentane Auslastung des Netzes nicht bekannt ist, wird mit zunächst kleinen Datenmengen begonnen. Der Algorithmus startet mit einem kleinen Fenster von einer [[Maximum Segment Size|MSS]] (Maximum Segment Size), in dem Datenpakete vom Sender zum Empfänger übertragen werden.
| |
|
| |
| Der Empfänger sendet nun eine Bestätigung (ACK) an den Sender zurück. Für jedes empfangene ACK wird die Größe des ''congestion window'' um eine MSS erhöht. Da für jedes versandte Paket bei erfolgreicher Übertragung ein ACK geschickt wird, führt dies innerhalb einer Roundtrip-Zeit zu einer Verdopplung des Congestion Windows. In dieser Phase gibt es also ein exponentielles Wachstum. Wenn das Fenster beispielsweise das Versenden von zwei Paketen gestattet, so erhält der Sender auch zwei ACKs und erhöht das Fenster daher um 2 auf 4. Dieses exponentielle Wachstum wird so lange fortgesetzt, bis der sogenannte ''Slow-Start Threshold'' erreicht wird (engl. {{lang|en|''threshold''}} ‚Schwelle‘). Die Phase des exponentiellen Wachstums wird auch ''Slow Start Phase'' genannt.
| |
|
| |
| Danach wird das Congestion Window nur noch um eine MSS erhöht, wenn alle Pakete aus dem Fenster erfolgreich übertragen wurden. Es wächst also pro Roundtrip-Zeit nur noch um eine MSS, also nur noch linear. Diese Phase wird als ''Congestion Avoidance Phase'' bezeichnet. Das Wachstum wird beendet, wenn das vom Empfänger festgelegte Empfangsfenster erreicht worden ist (siehe Fluss-Steuerung).
| |
|
| |
| Kommt es zu einem Timeout, wird das {{lang|en|''congestion window''}} wieder auf 1 zurückgesetzt, und der {{lang|en|''slow-start threshold''}} wird auf die Hälfte der Flight Size (Flight Size ist die Anzahl an Paketen, die verschickt, aber noch nicht quittiert wurden)<ref>{{Internetquelle |url=https://tools.ietf.org/html/rfc2581 |titel=TCP Congestion Control |autor=Stevens, W. Richard, Allman, Mark, Paxson, Vern |sprache=en |zugriff=2017-02-09}}</ref> herabgesetzt. Die Phase des exponentiellen Wachstums wird also verkürzt, so dass das Fenster bei häufigen Paketverlusten nur langsam wächst.
| |
|
| |
| ==== Fast-Retransmit und Fast-Recovery ====
| |
| {{lang|en|''Fast-Retransmit''}} und {{lang|en|''Fast-Recovery''}} („schnelles Erholen“) werden eingesetzt, um nach einem Paketverlust schneller auf die Stau-Situation zu reagieren. Dazu informiert ein Empfänger den Sender, wenn Pakete außer der Reihe ankommen und somit dazwischen ein Paketverlust vorliegt. Hierfür bestätigt der Empfänger das letzte korrekte Paket erneut für jedes weitere ankommende Paket außer der Reihe. Man spricht dabei von ''Dup-Acks'' ({{lang|en|''duplicate acknowledgments''}}), also mehrere aufeinanderfolgende Nachrichten, welche dasselbe Datensegment ACKen. Der Sender bemerkt die duplizierten Bestätigungen, und nach dem dritten Duplikat sendet er sofort, vor Ablauf des Timers, das verlorene Paket erneut. Weil nicht auf den Ablauf des Timers gewartet werden muss, heißt das Prinzip {{lang|en|''Fast Retransmit''}}. Die Dup-Acks sind auch Hinweise darauf, dass zwar ein Paketverlust stattfand, aber doch die folgenden Pakete angekommen sind. Deshalb wird das Sendefenster nach dem Fehler nur halbiert und nicht wie beim Timeout wieder mit Slow-Start begonnen. Zusätzlich kann das Sendefenster noch um die Anzahl der Dup-Acks erhöht werden, denn jedes steht für ein weiteres Paket, welches den Empfänger erreicht hat, wenn auch außer der Reihe. Da dadurch nach dem Fehler schneller wieder die volle Sendeleistung erreicht wird, nennt man das Prinzip {{lang|en|''Fast-Recovery''}}.
| |
|
| |
| ==== Selective ACKs (SACK) ====
| |
| {{lang|en|''Selective ACKs''}} werden genutzt, um noch mehr Kontrollinformationen über den Datenfluss vom Empfänger an den Sender zurückzuschicken. Dabei wird nach einem Paketverlust vom Empfänger im TCP-Optionsfeld ein zusätzlicher Header eingefügt, aus welchem der Sender genau ersehen kann, welche Pakete bereits angekommen sind und welche fehlen (im Gegensatz zu den standardmäßigen kumulativen ACKs von TCP, s. o.). Als bestätigt gelten die Pakete auch weiterhin erst dann, wenn der Empfänger dem Sender ein ACK für die Pakete übermittelt hat.
| |
|
| |
| ==== TCP-Tahoe und TCP-Reno ====
| |
| Bei den nach Orten in [[Nevada]] benannten TCP-Congestion-Control-Varianten [[TCP Tahoe|Tahoe]] und [[TCP Reno|Reno]] handelt es sich um zwei verschiedene Verfahren, wie TCP auf ein Überlast-Ereignis in Form von ''Timeouts'' oder ''Dup-Acks'' reagiert.
| |
|
| |
| Das inzwischen nicht mehr verwendete TCP Tahoe reduziert, sobald ein Timeout vorliegt, das Congestion Window für die nächste Übertragungseinheit auf 1. Anschließend startet wieder der TCP-Slow-Start-Prozess (mit verringertem Threshold, s. u.), bis ein neues Timeout- oder DUP-Acks-Ereignis stattfindet oder aber der Schwellwert (''Threshold'') zum Übergang in die Congestion-Avoidance-Phase erreicht wird. Dieser Schwellwert wurde nach dem Auftreten des Überlast-Ereignisses auf die Hälfte der Größe des derzeitigen Congestion Window gesetzt. Der Nachteil dieses Verfahrens ist zum einen, dass ein Paketverlust nur durch einen Timeout festgestellt wird, mitunter also recht lange dauert, und zum anderen die starke Reduktion des Congestion Windows auf 1.
| |
|
| |
| Die Weiterentwicklung von Tahoe ist TCP-Reno. Hierbei wird zwischen auftretenden Timeout- und Dup-Acks-Ereignissen unterschieden: Während TCP-Reno beim Auftreten eines Timeout genauso verfährt wie TCP Tahoe, wendet es beim Auftreten von drei doppelten Acks eine andere Variante für die Festlegung des nachfolgenden Congestion Windows an. Die grundlegende Idee dabei ist, dass der Verlust eines Segments auf dem Weg zum Empfänger nicht nur durch einen Timeout erkannt werden kann, sondern auch dadurch, dass der Empfänger mehrfach dieselben ACKs für das unmittelbar ''vor'' dem verlorengegangenen Segment zurückschickt (und zwar jedes Mal, wenn er ein weiteres Segment nach der „Lücke“ empfängt). Daher wird das nachfolgende Congestion Window auf die Hälfte des Wertes des Congestion Windows zum Zeitpunkt des Überlast-Ereignisses gesetzt; anschließend wird wieder in die Congestion Avoidance Phase übergegangen. Dieses Verhalten wird, wie oben im Artikel erwähnt, als ''Fast-Recovery'' beschrieben.
| |
|
| |
| === Überlaststeuerung als Forschungsfeld ===
| |
| {{veraltet|seit=2008}}
| |
| Die genaue Gestaltung der TCP-Überlaststeuerung war und ist ein überaus aktives Forschungsfeld mit zahlreichen wissenschaftlichen Publikationen. Auch heute arbeiten weltweit viele Wissenschaftler an Verbesserungen der TCP-Überlaststeuerung oder versuchen, sie an bestimmte äußere Gegebenheiten anzupassen. In diesem Zusammenhang sind insbesondere die speziellen Bedingungen der diversen drahtlosen Übertragungstechniken zu erwähnen, welche oft zu hohen oder stark schwankenden Laufzeitverzögerungen oder zu hohen Paketverlusten führen. TCP geht standardmäßig bei Paketverlusten davon aus, dass der Übertragungsweg an irgendeiner Stelle ausgelastet ist (Datenstau). Dies ist bei drahtgebundenen Netzen auch meistens der Fall, da dort nur selten Pakete ''auf der Leitung'' verlorengehen, sondern nicht angekommene Pakete fast immer von einem überlasteten Router verworfen wurden. Die richtige Reaktion auf so einen „Datenstau“ ist daher die Reduktion der Senderate. Bei drahtlosen Netzen trifft diese Annahme jedoch nicht mehr zu. Aufgrund des wesentlich unzuverlässigeren Übertragungsmediums treten Paketverluste oft auf, ohne dass einer der Router überlastet ist. In diesem Szenario ist das Reduzieren der Senderate jedoch nicht sinnvoll. Im Gegenteil, eine Erhöhung der Senderate, etwa durch Mehrfachsenden von Paketen, könnte die Zuverlässigkeit der Verbindung erhöhen.
| |
|
| |
| Häufig basieren diese Änderungen bzw. Erweiterungen der Überlastkontrolle auf komplexen mathematischen bzw. regelungstechnischen Fundamenten. Der Entwurf entsprechender Verbesserungen ist alles andere als einfach, da im Allgemeinen gefordert wird, dass TCP-Verbindungen mit älteren Überlastkontrollmechanismen durch die neuen Verfahren nicht wesentlich benachteiligt werden dürfen, wenn beispielsweise mehrere TCP-Verbindungen um Bandbreite auf einem gemeinsam genutzten Medium „kämpfen“. Aus all diesen Gründen ist die in der Realität verwendete TCP-Überlaststeuerung auch wesentlich komplizierter gestaltet, als es weiter oben im Artikel beschrieben wird.
| |
|
| |
| Aufgrund der zahlreichen Forschungen zur TCP-Überlaststeuerung setzten sich im Laufe der Zeit verschiedene Überlaststeuerungsmechanismen als Quasi-Standards durch. Hier sind insbesondere [[TCP Reno]], [[TCP Tahoe]] und [[TCP Vegas]] zu nennen.
| |
|
| |
| Im Folgenden sollen exemplarisch einige neuere bzw. experimentellere Ansätze grob umrissen werden. Ein Ansatz ist beispielsweise [[Router Congestion Feedback|RCF]] (Router Congestion Feedback). Hierbei werden durch die Router entlang dem Pfad umfangreichere Informationen an die TCP-Sender oder -Empfänger geschickt, damit diese ihre Ende-zu-Ende-Überlaststeuerung besser abstimmen können. Hierdurch sind erwiesenermaßen beträchtliche Durchsatzsteigerungen möglich. Beispiele dafür finden sich in der Literatur unter den Stichworten XCP ({{lang|en|''explicit control protocol''}}), EWA ({{lang|en|''explicit window adaptation''}}), FEWA ({{lang|en|''fuzzy EWA''}}), FXCP ({{lang|en|''fuzzy XCP''}}) und ETCP ({{lang|en|''enhanced TCP''}}) (Stand: Mitte 2004). Weiterhin ist die {{lang|en|''[[Explicit Congestion Notification]]''}} (ECN) eine Implementierung einer RFC. Vereinfacht gesagt bilden diese Verfahren eine Überlaststeuerung nach Art von [[Asynchronous Transfer Mode|ATM]] nach.
| |
|
| |
| Andere Ansätze verfolgen die logische Trennung der Regelschleife einer TCP-Verbindung in zwei oder mehr Regelschleifen an den entscheidenden Stellen im Netz (z. B. beim sogenannten [[Split-TCP]]). Weiterhin gibt es das Verfahren der logischen Bündelung mehrerer TCP-Verbindungen in einem TCP-Sender, damit diese Verbindungen ihre Informationen über den momentanen Zustand des Netzes austauschen und schneller reagieren können. Hier ist insbesondere das Verfahren [[Ensemble Flow Congestion Management|EFCM]] ({{lang|en|Ensemble Flow Congestion Management}}) zu nennen. All diese Verfahren können unter dem Begriff ''{{lang|en|Network Information Sharing}}'' zusammengefasst werden.
| |
|
| |
| == TCP-Prüfsumme und TCP-Pseudo-Header == | | == TCP-Prüfsumme und TCP-Pseudo-Header == |
| Der Pseudo-Header ist eine Zusammenstellung von Header-Teilen eines TCP-Segments und Teilen des Headers des einkapselnden IP-Pakets. Es ist ein Modell, an dem sich die Berechnung der TCP-[[Prüfsumme]] ({{enS|''checksum''}}) anschaulich beschreiben lässt. | | Der Pseudo-Header ist eine Zusammenstellung von Header-Teilen eines TCP-Segments und Teilen des Headers des einkapselnden IP-Pakets. Es ist ein Modell, an dem sich die Berechnung der TCP-[[Prüfsumme]] ({{enS|''checksum''}}) anschaulich beschreiben lässt. |
TCP (Transmission Control Protocol) ist ein Netzwerkprotokoll, das definiert, auf welche Art und Weise Daten zwischen Netzwerkkomponenten ausgetauscht werden sollen.
Beschreibung
- Ist ein zuverlässiges, verbindungsorientiertes, paketvermitteltes (nicht paketvermittelnd) Transportprotokoll.
- TCP ermöglicht die Übertragung eines Datenstroms.
- Im Unterschied zum verbindungslosen User Datagram Protokoll (UDP) stellt TCP eine Verbindung zwischen zwei Endpunkten (Sockets) einer Netzverbindung her.
- Auf dieser Verbindung können in beide Richtungen Daten übertragen werden.
Vorteile
- Netzwerküberlastungskontrolle.
- Zuverlässige Datenübertragung:
- erkennt verlorene, doppelte und fehlerhafte Segmente.
Allgemeines
- TCP ist im Prinzip eine Ende-zu-Ende-Verbindung in Vollduplex.
- Kann auch als zwei Halbduplexverbindungen betrachtet werden (Informationsfluss in beide Richtungen (allerdings nicht gleichzeitig)).
- Die Daten in Gegenrichtung können zusätzliche Steuerungsinformationen enthalten.
- Anwendungen, die TCP häufig nutzen, sind zum Beispiel Webbrowser und Webserver.
TCP-Software
- Übernimmt Verbindungsverwaltung sowie die Datenübertragung.
- Netz-Protokollstack des Betriebssystems.
- Anwendungsprogramme nutzen Sockets.
Entwicklung
- Entwickelt von Robert E. Kahn und Vinton G. Cerf als Forschungsarbeit.
- Beginn 1973, erste Standardisierung 1981 als RFC 793.
- Danach gab es viele Erweiterungen, diese werden bis heute in RFCs spezifiziert.
- Das Transmission Control Protocol arbeitet auf dem OSI-04
- TCP verwendet 16-Bit Portnummern zur Adressierung
- Zusätzlich zur Adressierung übernimmt es weitere Aufgaben
- Verbindungsmanagement (Three-Way-Handshake)
- Verbindungsaufbau/-abbau
- Fehlerkontrolle (-korrektur)
- Flußkontrolle (engl. Flow Control)
- verhindert, dass der Empfänger von einem Sender schneller Daten erhält, als er entgegennehmen kann
- Netzwerk-Überlastkontrolle (engl. Congestion Control)
- verhindert, dass es zu einer Überlastsituation im Netz kommt, die zum vollständigen Zusammenbruch des Netzes führen könnte (congestion collapse)
- bei Erkennen einer Überlastsituation (Paketverlust!) wird vom Sender die Datenrate gedrosselt
- transparente Übertragung von byte streams
- Anwendungen, die TCP benutzen, sollen nicht merken, dass die Daten in Form von Paketen übertragen werden.
- Mutliplexing
- Mehrfachnutzung einer Verbindung
- Verbindungsorientiertes Protokoll
- Beinhaltet verschiedene Algorithmen zur Fehlererkennung und -behandlung
- Sequenznummern
- Quittungsnummern
- Anzeigen (Flags)
- Die richtige Reihenfolge der Daten ist garantiert
- Bietet der Anwendungsschicht einen zuverlässigen Transportdienst
- RFC 793. J. Postel. Transmission Control Protocol. 1981.
- setzt direkt auf dem Internet Protokoll (IP) auf
- IP Protokoll Nr.: 06
- Theoretisch ist es möglich TCP mit einem beliebigen Protokoll der Schicht 3 zu kombinieren
- Praktisch wird TCP allerdings immer in IP gekapselt
- garantiert eine fehlergesicherte, zuverlässige Transportverbindung zwischen zwei Rechnersystemen (Ende zu Ende Kontrolle)
TCP im DoD-Modell
- Rolle von TCP im OSI-Referenzmodell
Eigenschaften von TCP
- Vollduplex-Verbindung
- stellt eine “byte pipe” zur Verfügung - unstrukturierter Datenstrom
- Folgenummern sind Bytenummern
- Sliding Window-Protokoll
- Variable Grösse des Sendefensters bestimmt durch das Maximum von:
- Angabe des Empfängers (receiver window size)
- Congestion window size, abhängig von einer lokalen Schätzung der Netzbelastung -> “Slow Start” Algorithmus
Basismechanismen
- Unterteilt den byte stream in Einheiten
- die jeweils in einem IP Paket übertragen werden, diese Einheiten heißen Segmente
- Segmente haben eine variable Länge
- Die maximale Segmentgrösse wird bei der Verbindungserstellung festgelegt
- Jedes Segment hat eine Folgenummer, die seine Position im Datenstrom in Bytes spezifiziert.
- Abgesendete Segmente müssen innerhalb einer bestimmten Zeit bestätigt werden (adaptiv geschätzte Round Trip Time).
- Bestätigungen werden verzögert gesendet (ca. 200 ms)
- Wenn keine Bestätigung über den erfolgreichen Empfang dieses Paketes innerhalb der Timer-Laufzeit eintrifft, wird die Übertragung wiederholt.
- Jedes Segment hat eine Ende-zu-Ende-Prüfsumme
- Fehlerhaft empfangene Segmente werden ignoriert.
- Empfänger ordnet empfangene Segmente entsprechend ihrer Folgenummer
- Duplikate werden ignoriert.
Socket-Schnittstelle
- De-facto-Standard für TCP/IP Programmierschnittstelle
- Zugang zu TCP, UDP und (eingeschränkt) IP
- Unterstützung verschiedener Protokolle
- Protocol familiy
- Address familiy
- Abstraktion für Kommunikationsendpunkte
- sockets
… mit verschiedenen Kommunikationseigenschaften
- socket types (stream socket, datagram socket)
- Benennung/Adressierung von Kommunikations-endpunkten
- name binding
- Können benutzt werden wie Dateideskriptoren
Verbindungen und Verbindungsendpunkte
- Eine TCP-Verbindung wird durch ein Paar von Adressen und Port-Nummern identifiziert (Verbindungsendpunkte):
- IP-Adresse und Port-Nummer Host A
- IP-Adresse und Port-Nummer Host B
- Jede Verbindung wird durch ein Paar von Verbindungsendpunkten eindeutig identifiziert
- mehrere Verbindung zwischen den gleichen Hosts sind dadurch gleichzeitig möglich.
Segmente, Datenströme und Sequenznummern
- Erhaltung der Reihenfolge
- Nummerierung:
- Zufallszahl auf beiden Seiten (32 Bit)
- Seq.nr. := Initiale Seq.nr. + Byte-Position im Datenstrom
- TCP betrachtet einen Datenstrom als Sequenz von Bytes, die für die Übertragung in TCP-Segmente eingeteilt werden.
- Jedes Segment wird dann in der Regel auf ein IP-Paket abgebildet.
- Größe eines Segmentes bei lokaler Übertragung gemäß physikalischem Netz (MTU)
- Ist diese nicht angegeben oder kann sie nicht ermittelt werden, dann wird ein Standartwert von 536 Bytes verwandt
Allgemeines
TCP ist im Prinzip eine Ende-zu-Ende-Verbindung in Vollduplex, welche die Übertragung der Informationen in beide Richtungen zulässt, analog zu einem Telefongespräch. Diese Verbindung kann auch als zwei Halbduplexverbindungen, bei denen Informationen in beide Richtungen (allerdings nicht gleichzeitig) fließen können, betrachtet werden. Die Daten in Gegenrichtung können dabei zusätzliche Steuerungsinformationen enthalten. Die Verwaltung dieser Verbindung sowie die Datenübertragung werden von der TCP-Software übernommen. Die TCP-Software ist üblicherweise im Netz-Protokollstack des Betriebssystems angesiedelt. Anwendungsprogramme benutzen eine Schnittstelle dazu, meist Sockets, die sich (je nach Betriebssystem unterschiedlich) beispielsweise bei Microsoft Windows in extra einzubindenden Programmbibliotheken („Winsock.dll“ bzw. „wsock32.dll“) befinden. Linux und viele andere unixoide Betriebssysteme enthalten einen Socketlayer im Betriebssystemkern. Auf den Socketlayer wird über Systemaufrufe zugegriffen. Anwendungen, die TCP häufig nutzen, sind zum Beispiel Webbrowser und Webserver.
Jede TCP-Verbindung wird eindeutig durch zwei Endpunkte identifiziert. Ein Endpunkt stellt ein geordnetes Paar dar, bestehend aus IP-Adresse und Port. Ein solches Paar bildet eine bidirektionale Software-Schnittstelle und wird auch als Socket bezeichnet. Somit wird eine TCP-Verbindung durch vier Werte (einem Quadrupel) identifiziert:
(Lokaler Rechner, Lokaler Port, Entfernter Rechner, Entfernter Port)
Dabei kommt es auf das gesamte Quadrupel an. Beispielsweise können zwei verschiedene Prozesse auf demselben Rechner denselben lokalen Port benutzen und dabei sogar mit demselben Rechner auf der gegenüberliegenden Seite kommunizieren, sofern die beteiligten Prozesse auf der anderen Seite unterschiedliche Ports benutzen. In einem solchen Fall würde es sich um zwei verschiedene Verbindungen handeln, deren Quadrupel sich nur in einem von vier Werten unterscheidet: dem Port auf der gegenüberliegenden Seite.
Verbindung 1: (Lokaler Rechner, Port x, Entfernter Rechner, Port y)
Verbindung 2: (Lokaler Rechner, Port x, Entfernter Rechner, Port z)
Ein Serverprozess erzeugt beispielsweise einen Socket (Vorlage:Lang, Vorlage:Lang) auf Port 80, markiert diesen für eingehende Verbindungen (Vorlage:Lang) und fordert vom Betriebssystem die nächste anstehende Verbindung an (Vorlage:Lang). Diese Anforderung blockiert den Serverprozess zunächst, da noch keine Verbindung existiert. Kommt dann die erste Verbindungsanfrage durch einen Client an, wird sie vom Betriebssystem angenommen, so dass die Verbindung zustande kommt. Ab jetzt wird diese Verbindung durch das oben beschriebene Quadrupel identifiziert.
Schließlich wird der Serverprozess aufgeweckt und ihm ein Handle für diese Verbindung überreicht. Üblicherweise startet der Serverprozess anschließend einen Kindprozess, zu dem er die Behandlung der Verbindung delegiert. Er selbst setzt dann seine Arbeit mit einer weiteren Accept-Anforderung an das Betriebssystem fort.
Dadurch ist es möglich, dass ein Webserver mehrere Verbindungen von verschiedenen Rechnern annehmen kann. Mehrfaches Vorlage:Lang auf demselben Port ist nicht möglich. Üblicherweise bestimmt das Programm auf der Clientseite den Port nicht selbst, sondern lässt ihn sich vom Betriebssystem zuweisen.
Ports sind 16-Bit-Zahlen (Portnummern) und reichen von 0 bis 65535. Ports von 0 bis 1023 sind reserviert[1] und werden von der IANA vergeben, z. B. ist Port 80 für das im WWW verwendete HTTP reserviert. Das Benutzen der vordefinierten Ports ist nicht bindend. So kann jeder Administrator beispielsweise einen FTP-Server (normalerweise Port 21) auch auf einem beliebigen anderen Port laufen lassen.
siehe Transmission Control Protocol/Header
Ports
siehe Port
Verbindungsverwaltung
siehe Transmission Control Protocol/Verbindungsverwaltung
Dokumentation
RFC
- RFC 793 (1981)
- RFC 7323 (2014)
Man-Pages
Info-Pages
Siehe auch
Links
Projekt-Homepage
Weblinks
Einzelnachweise
- ↑ Referenzfehler: Es ist ein ungültiger
<ref>
-Tag vorhanden: Für die Referenz namens Well Known Ports
wurde kein Text angegeben.
Testfragen
Wikipedia
Der Pseudo-Header ist eine Zusammenstellung von Header-Teilen eines TCP-Segments und Teilen des Headers des einkapselnden IP-Pakets. Es ist ein Modell, an dem sich die Berechnung der TCP-Prüfsumme () anschaulich beschreiben lässt.
Falls IP mit TCP eingesetzt wird, ist es wünschenswert, den Header des IP-Pakets mit in die Sicherung von TCP aufzunehmen. Dadurch ist die Zuverlässigkeit seiner Übertragung garantiert. Darum bildet man den IP-Pseudo-Header. Er besteht aus IP-Absender und -Empfängeradresse, einem Null-Byte, einem Byte, das angibt, zu welchem Protokoll die Nutzdaten des IP-Pakets gehören und der Länge des TCP-Segments mit TCP-Header. Da es sich im Fall des Pseudo-Headers immer um IP-Pakete handelt, die TCP-Segmente transportieren, ist dieses Byte auf den Wert 6 gesetzt. Der Pseudo-Header wird für die Berechnung der Prüfsumme vor den TCP-Header gelegt. Anschließend berechnet man die Prüfsumme. Die Summe wird im Feld „checksum“ abgelegt und das Fragment versendet. Kein Pseudo-Header wird je versendet.
TCP-Pseudo-Header (IPv4)
Bit offset
|
Bit 0–3
|
4–7
|
8–15
|
16–31
|
0
|
IP-Absenderadresse
|
32
|
IP-Empfängeradresse
|
64
|
00000000
|
6 (=TCP)
|
TCP-Länge
|
96
|
Quellport
|
Zielport
|
128
|
Sequenznummer
|
160
|
ACK-Nummer
|
192
|
Datenoffset
|
Reserviert
|
Flags
|
Window
|
224
|
Prüfsumme
|
Urgent pointer
|
256
|
Options (optional)
|
256/288+
|
Daten
|
Die Berechnung der Prüfsumme für IPv4 ist in RFC 793 definiert:
Die Prüfsumme ist das 16-Bit-Einerkomplement der Einerkomplement-Summe aller 16-Bit-Wörter im Header und der Nutzdaten des unterliegenden Protokolls. Wenn ein Segment eine ungerade Anzahl Bytes enthält, wird ein Padding-Byte angehängt. Das Padding wird nicht übertragen. Während der Berechnung der Prüfsumme wird das Prüfsummenfeld selbst mit Nullen gefüllt.
Abweichend hiervon sieht bei IPv6 der Pseudo-Header gemäß RFC 2460 wie folgt aus:
Vorlage:"
TCP Pseudo-Header für IPv6
Bit offset
|
0–7
|
8–15
|
16–23
|
24–31
|
0
|
Quelladresse
|
32
|
64
|
96
|
128
|
Zieladresse
|
160
|
192
|
224
|
256
|
TCP-Länge
|
288
|
Nullwerte
|
Nächster Header
|
320
|
Quellport
|
Zielport
|
352
|
Sequenznummer
|
384
|
ACK-Nummer
|
416
|
Datenoffset
|
Reserviert
|
Flags
|
Window
|
448
|
Prüfsumme
|
Urgent pointer
|
480
|
Options (optional)
|
480/512+
|
Daten
|
Der Empfänger erstellt ebenfalls den Pseudo-Header und führt anschließend dieselbe Berechnung aus, ohne das Checksum-Feld auf Null zu setzen. Dadurch sollte das Ergebnis FFFF (Hexadezimal) sein. Ist dies nicht der Fall, so wird das TCP-Segment ohne Nachricht verworfen. Dies hat zur Folge, dass der RTT-Timer beim Absender abläuft und das TCP-Segment noch einmal abgeschickt wird.
Der Grund für dieses komplizierte Verfahren liegt darin, dass sich Teile des IP-Headers während des Routings im IP-Netz verändern. Das TTL-Feld wird bei jedem IP-Hop um eins dekrementiert. Würde das TTL-Feld in die Prüfsummenberechnung einfließen, würde IP die Sicherung des Transports durch TCP zunichtemachen. Deshalb wird nur ein Teil des IP-Headers in die Prüfsummenberechnung einbezogen. Die Prüfsumme ist zum einen wegen ihrer Länge von nur 16 Bit und wegen der einfachen Berechnungsvorschrift anfällig für nicht erkennbare Fehler. Bessere Verfahren wie CRC-32 wurden zur Zeit der Definition als zu aufwendig angesehen.
Datenintegrität und Zuverlässigkeit
Im Gegensatz zum verbindungslosen UDP implementiert TCP einen bidirektionalen, byte-orientierten, zuverlässigen Datenstrom zwischen zwei Endpunkten. Das darunterliegende Protokoll (IP) ist paketorientiert, wobei Datenpakete verlorengehen können, in verkehrter Reihenfolge ankommen dürfen und sogar doppelt empfangen werden können. TCP wurde entwickelt, um mit der Unsicherheit der darunterliegenden Schichten umzugehen. Es prüft daher die Integrität der Daten mittels der Prüfsumme im Paketkopf und stellt die Reihenfolge durch Sequenznummern sicher. Der Sender wiederholt das Senden von Paketen, falls keine Bestätigung innerhalb einer bestimmten Zeitspanne (Timeout) eintrifft. Die Daten der Pakete werden beim Empfänger in einem Puffer in der richtigen Reihenfolge zu einem Datenstrom zusammengefügt und doppelte Pakete verworfen.
Der Datentransfer kann selbstverständlich jederzeit nach dem „Aufbau einer Verbindung“ gestört, verzögert oder ganz unterbrochen werden. Das Übertragungssystem läuft dann in einen Timeout. Der vorab getätigte „Verbindungsaufbau“ stellt also keinerlei Gewähr für eine nachfolgende, dauerhaft gesicherte Übertragung dar.
Bestätigungen
Die jeweilige Länge des Puffers, bis zu der keine Lücke im Datenstrom existiert, wird bestätigt (Vorlage:Lang). Dadurch ist das Ausnutzen der Netz-Bandbreite auch bei großen Strecken möglich. Bei einer Übersee- oder Satellitenverbindung dauert das Eintreffen des ersten ACK-Signals aus technischen Gründen bisweilen mehrere 100 Millisekunden, in dieser Zeit können unter Umständen mehrere hundert Pakete gesendet werden. Der Sender kann den Empfängerpuffer füllen, bevor die erste Bestätigung eintrifft. Alle Pakete im Puffer können gemeinsam bestätigt werden. Bestätigungen können zusätzlich zu den Daten in den TCP-Header des entgegengesetzten Datenstroms eingefügt werden (Vorlage:Lang), falls der Empfänger ebenfalls Daten für den Sender bereithält.
Siehe auch
Literatur
- Douglas Comer: Internetworking with TCP/IP. Principles, Protocols, and Architectures. Prentice Hall, 2000, ISBN 0-13-018380-6.
- Craig Hunt: TCP/IP Netzwerk-Administration. O’Reilly, Bejing 2003, ISBN 3-89721-179-3.
- Richard Stevens: TCP/IP Illustrated. Volume 1. The Protocols. Addison-Wesley, Boston 1994, 2004. ISBN 0-201-63346-9.
- Richard Stevens: TCP/IP Illustrated. Volume 2. The Implementation. Addison-Wesley, Boston 1994, ISBN 0-201-63354-X.
- Andrew S. Tanenbaum: Computernetzwerke. 4. Auflage. Pearson Studium, München 2003, ISBN 978-3-8273-7046-4, S. 580 ff.
- James F. Kurose, Keith W. Ross: Computernetze. Ein Top-Down-Ansatz mit Schwerpunkt Internet. Bafög-Ausgabe. Pearson Studium, München 2004, ISBN 3-8273-7150-3.
- Michael Tischer, Bruno Jennrich: Internet Intern. Technik & Programmierung. Data-Becker, Düsseldorf 1997, ISBN 3-8158-1160-0.
Weblinks
RFCs
- RFC 793 (Transmission Control Protocol)
- RFC 1071 (Berechnen der Prüfsumme für IP, UDP und TCP)
- RFC 1122 (Fehlerbehebungen bei TCP)
- RFC 1323 (Erweiterungen bei TCP)
- RFC 2018 (TCP SACK – Selective Acknowledgment Options)
- RFC 3168 (Explicit Congestion Notification)
- RFC 5482 (TCP User Timeout Option)
- RFC 5681 (TCP Congestion Control – TCP-Überlastkontrolle)
- RFC 7414 (Übersicht zu TCP RFCs)
Sonstige
Einzelnachweise
Referenzfehler: Das in <references>
definierte <ref>
-Tag mit dem Namen „Well Known Ports“ wird im vorausgehenden Text nicht verwendet.
Referenzfehler: Das in <references>
definierte <ref>
-Tag mit dem Namen „RFC 793, Seite 11“ wird im vorausgehenden Text nicht verwendet.
Referenzfehler: Das in <references>
definierte <ref>
-Tag mit dem Namen „RFC 793, Seite 21“ wird im vorausgehenden Text nicht verwendet.
Referenzfehler: Das in <references>
definierte <ref>
-Tag mit dem Namen „RFC 1948“ wird im vorausgehenden Text nicht verwendet.