Linux/Tunnel: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
|||
Zeile 1: | Zeile 1: | ||
== | == Virtuelle Schnittstellen: Tunnels == | ||
Linux | Linux hat viele Arten von Tunneln unterstützt, aber neue Benutzer können durch die Unterschiede verwirrt sein und nicht wissen, welche für einen bestimmten Anwendungsfall am besten geeignet ist | ||
* In | * In diesem Artikel gebe ich eine kurze Einführung in die häufig verwendeten Tunnelschnittstellen im Linux-Kernel. | ||
* | * Es gibt keine Code-Analyse, nur eine kurze Einführung in die Schnittstellen und ihre Verwendung unter Linux | ||
* | * Jeder mit einem Netzwerkhintergrund könnte an diesen Informationen interessiert sein | ||
* | * Eine Liste der Tunnelschnittstellen sowie Hilfe zur spezifischen Tunnelkonfiguration kann mit dem Befehl iproute2 <code>ip link help</code> abgerufen werden. | ||
Nach der Lektüre dieses Artikels wissen Sie, was diese Schnittstellen sind, welche Unterschiede es zwischen ihnen gibt, wann sie verwendet werden und wie man sie erstellt | |||
== IPIP Tunnel == | == IPIP Tunnel == |
Version vom 7. Juli 2024, 10:21 Uhr
Virtuelle Schnittstellen: Tunnels
Linux hat viele Arten von Tunneln unterstützt, aber neue Benutzer können durch die Unterschiede verwirrt sein und nicht wissen, welche für einen bestimmten Anwendungsfall am besten geeignet ist
- In diesem Artikel gebe ich eine kurze Einführung in die häufig verwendeten Tunnelschnittstellen im Linux-Kernel.
- Es gibt keine Code-Analyse, nur eine kurze Einführung in die Schnittstellen und ihre Verwendung unter Linux
- Jeder mit einem Netzwerkhintergrund könnte an diesen Informationen interessiert sein
- Eine Liste der Tunnelschnittstellen sowie Hilfe zur spezifischen Tunnelkonfiguration kann mit dem Befehl iproute2
ip link help
abgerufen werden.
Nach der Lektüre dieses Artikels wissen Sie, was diese Schnittstellen sind, welche Unterschiede es zwischen ihnen gibt, wann sie verwendet werden und wie man sie erstellt
IPIP Tunnel
IPIP tunnel, just as the name suggests, is an IP over IP tunnel, defined in RFC 2003
- The IPIP tunnel header looks like:
It's typically used to connect two internal IPv4 subnets through public IPv4 internet
- It has the lowest overhead but can only transmit IPv4 unicast traffic
- That means you cannot send multicast via IPIP tunnel
IPIP tunnel supports both IP over IP and MPLS over IP
Note: When the ipip
module is loaded, or an IPIP device is created for the first time, the Linux kernel will create a tunl0
default device in each namespace, with attributes local=any
and remote=any
- When receiving IPIP protocol packets, the kernel will forward them to
tunl0
as a fallback device if it can't find another device whose local/remote attributes match their source or destination address more closely
- Here is how to create an IPIP tunnel
On Server A:
# ip link add name ipip0 type ipip local LOCAL_IPv4_ADDR remote REMOTE_IPv4_ADDR # ip link set ipip0 up # ip addr add INTERNAL_IPV4_ADDR/24 dev ipip0 Add a remote internal subnet route if the endpoints don't belong to the same subnet # ip route add REMOTE_INTERNAL_SUBNET/24 dev ipip0
On Server B:
# ip link add name ipip0 type ipip local LOCAL_IPv4_ADDR remote REMOTE_IPv4_ADDR # ip link set ipip0 up # ip addr add INTERNAL_IPV4_ADDR/24 dev ipip0 # ip route add REMOTE_INTERNAL_SUBNET/24 dev ipip0
Note: Please replace LOCAL_IPv4_ADDR
, REMOTE_IPv4_ADDR
, INTERNAL_IPV4_ADDR
, REMOTE_INTERNAL_SUBNET
to the addresses based on your testing environment
- The same with following example configs
SIT Tunnel
SIT stands for Simple Internet Transition
- The main purpose is to interconnect isolated IPv6 networks, located in global IPv4 internet
Initially, it only had an IPv6 over IPv4 tunneling mode
- After years of development, however, it acquired support for several different modes, such as
ipip
(the same with IPIP tunnel),ip6ip
,mplsip
, andany
- Mode
any
is used to accept both IP and IPv6 traffic, which may prove useful in some deployments - SIT tunnel also supports ISATA, and here is a usage example
The SIT tunnel header looks like:
When the sit
module is loaded, the Linux kernel will create a default device, named sit0
Here is how to create a SIT tunnel:
On Server A: # ip link add name sit1 type sit local LOCAL_IPv4_ADDR remote REMOTE_IPv4_ADDR mode any # ip link set sit1 up # ip addr add INTERNAL_IPV4_ADDR/24 dev sit1
Then, perform the same steps on the remote side
ip6tnl Tunnel
ip6tnl is an IPv4/IPv6 over IPv6 tunnel interface, which looks like an IPv6 version of the SIT tunnel
- The tunnel header looks like:
ip6tnl supports modes ip6ip6
, ipip6
, any
. Mode ipip6
is IPv4 over IPv6, and mode ip6ip6
is IPv6 over IPv6, and mode any
supports both IPv4/IPv6 over IPv6
When the ip6tnl
module is loaded, the Linux kernel will create a default device, named ip6tnl0
Here is how to create an ip6tnl tunnel:
# ip link add name ipip6 type ip6tnl local LOCAL_IPv6_ADDR remote REMOTE_IPv6_ADDR mode any
VTI and VTI6
Virtual Tunnel Interface (VTI) on Linux is similar to Cisco's VTI and Juniper's implementation of secure tunnel (st.xx)
This particular tunneling driver implements IP encapsulations, which can be used with xfrm to give the notion of a secure tunnel and then use kernel routing on top
In general, VTI tunnels operate in almost the same way as ipip or sit tunnels, except that they add a fwmark and IPsec encapsulation/decapsulation
VTI6 is the IPv6 equivalent of VTI
Here is how to create a VTI tunnel:
# ip link add name vti1 type vti key VTI_KEY local LOCAL_IPv4_ADDR remote REMOTE_IPv4_ADDR # ip link set vti1 up # ip addr add LOCAL_VIRTUAL_ADDR/24 dev vti1
# ip xfrm state add src LOCAL_IPv4_ADDR dst REMOTE_IPv4_ADDR spi SPI PROTO ALGR mode tunnel # ip xfrm state add src REMOTE_IPv4_ADDR dst LOCAL_IPv4_ADDR spi SPI PROTO ALGR mode tunnel # ip xfrm policy add dir in tmpl src REMOTE_IPv4_ADDR dst LOCAL_IPv4_ADDR PROTO mode tunnel mark VTI_KEY # ip xfrm policy add dir out tmpl src LOCAL_IPv4_ADDR dst REMOTE_IPv4_ADDR PROTO mode tunnel mark VTI_KEY
You can also configure IPsec via libreswan or strongSwan
GRE and GRETAP
Generic Routing Encapsulation, also known as GRE, is defined in RFC 2784
GRE tunneling adds an additional GRE header between the inside and outside IP headers
- In theory, GRE could encapsulate any Layer 3 protocol with a valid Ethernet type, unlike IPIP, which can only encapsulate IP
- The GRE header looks like:
Note that you can transport multicast traffic and IPv6 through a GRE tunnel
When the gre
module is loaded, the Linux kernel will create a default device, named gre0
Here is how to create a GRE tunnel:
# ip link add name gre1 type gre local LOCAL_IPv4_ADDR remote REMOTE_IPv4_ADDR [seq] key KEY
While GRE tunnels operate at OSI Layer 3, GRETAP works at OSI Layer 2, which means there is an Ethernet header in the inner header
Here is how to create a GRETAP tunnel:
# ip link add name gretap1 type gretap local LOCAL_IPv4_ADDR remote REMOTE_IPv4_ADDR
IP6GRE and IP6GRETAP
IP6GRE is the IPv6 equivalent of GRE, which allows us to encapsulate any Layer 3 protocol over IPv6
- The tunnel header looks like:
IP6GRETAP, just like GRETAP, has an Ethernet header in the inner header:
Here is how to create a GRE tunnel:
# ip link add name gre1 type ip6gre local LOCAL_IPv6_ADDR remote REMOTE_IPv6_ADDR # ip link add name gretap1 type ip6gretap local LOCAL_IPv6_ADDR remote REMOTE_IPv6_ADDR
FOU
Tunneling can happen at multiple levels in the networking stack
- IPIP, SIT, GRE tunnels are at the IP level, while FOU (foo over UDP) is UDP-level tunneling
There are some advantages of using UDP tunneling as UDP works with existing HW infrastructure, like RSS in NICs, ECMP in switches, and checksum offload
- The developer's patch set shows significant performance increases for the SIT and IPIP protocols
Currently, the FOU tunnel supports encapsulation protocol based on IPIP, SIT, GRE
- An example FOU header looks like:
Here is how to create a FOU tunnel:
# ip fou add port 5555 ipproto 4 # ip link add name tun1 type ipip remote 192.168.1.1 local 192.168.1.2 ttl 225 encap fou encap-sport auto encap-dport 5555
The first command configured a FOU receive port for IPIP bound to 5555; for GRE, you need to set ipproto 47
- The second command set up a new IPIP virtual interface (tun1) configured for FOU encapsulation, with dest port 5555
Note: FOU is not supported in Red Hat Enterprise Linux
GUE
Generic UDP Encapsulation (GUE) is another kind of UDP tunneling
- The difference between FOU and GUE is that GUE has its own encapsulation header, which contains the protocol info and other data
Currently, GUE tunnel supports inner IPIP, SIT, GRE encapsulation
- An example GUE header looks like:
Here is how to create a GUE tunnel:
# ip fou add port 5555 gue # ip link add name tun1 type ipip remote 192.168.1.1 local 192.168.1.2 ttl 225 encap gue encap-sport auto encap-dport 5555
This will set up a GUE receive port for IPIP bound to 5555, and an IPIP tunnel configured for GUE encapsulation
Note: GUE is not supported in Red Hat Enterprise Linux
GENEVE
Generic Network Virtualization Encapsulation (GENEVE) supports all of the capabilities of VXLAN, NVGRE, and STT and was designed to overcome their perceived limitations
- Many believe GENEVE could eventually replace these earlier formats entirely
- The tunnel header looks like:
which looks very similar to VXLAN
- The main difference is that the GENEVE header is flexible
- It's very easy to add new features by extending the header with a new Type-Length-Value (TLV) field
- For more details, you can see the latest geneve ietf draft or refer to this What is GENEVE? article
Open Virtual Network (OVN) uses GENEVE as default encapsulation
- Here is how to create a GENEVE tunnel:
# ip link add name geneve0 type geneve id VNI remote REMOTE_IPv4_ADDR
ERSPAN and IP6ERSPAN
Encapsulated Remote Switched Port Analyzer (ERSPAN) uses GRE encapsulation to extend the basic port mirroring capability from Layer 2 to Layer 3, which allows the mirrored traffic to be sent through a routable IP network
- The ERSPAN header looks like:
The ERSPAN tunnel allows a Linux host to act as an ERSPAN traffic source and send the ERSPAN mirrored traffic to either a remote host or to an ERSPAN destination, which receives and parses the ERSPAN packets generated from Cisco or other ERSPAN-capable switches
- This setup could be used to analyze, diagnose, and detect malicious traffic
Linux currently supports most features of two ERSPAN versions: v1 (type II) and v2 (type III)
Here is how to create an ERSPAN tunnel:
# ip link add dev erspan1 type erspan local LOCAL_IPv4_ADDR remote REMOTE_IPv4_ADDR seq key KEY erspan_ver 1 erspan IDX or # ip link add dev erspan1 type erspan local LOCAL_IPv4_ADDR remote REMOTE_IPv4_ADDR seq key KEY erspan_ver 2 erspan_dir DIRECTION erspan_hwid HWID
Add tc filter to monitor traffic # tc qdisc add dev MONITOR_DEV handle ffff: ingress # tc filter add dev MONITOR_DEV parent ffff: matchall skip_hw action mirred egress mirror dev erspan1
Summary
Here is a summary of all the tunnels we introduced
Tunnel/Link Type | Outer Header | Encapsulate Header | Inner Header |
---|---|---|---|
ipip | IPv4 | None | IPv4 |
sit | IPv4 | None | IPv4/IPv6 |
ip6tnl | IPv6 | None | IPv4/IPv6 |
vti | IPv4 | IPsec | IPv4 |
vti6 | IPv6 | IPsec | IPv6 |
gre | IPv4 | GRE | IPv4/IPv6 |
gretap | IPv4 | GRE | Ether + IPv4/IPv6 |
ip6gre | IPv6 | GRE | IPv4/IPv6 |
ip6gretap | IPv6 | GRE | Ether + IPv4/IPv6 |
fou | IPv4/IPv6 | UDP | IPv4/IPv6/GRE |
gue | IPv4/IPv6 | UDP + GUE | IPv4/IPv6/GRE |
geneve | IPv4/IPv6 | UDP + Geneve | Ether + IPv4/IPv6 |
erspan | IPv4 | GRE + ERSPAN | IPv4/IPv6 |
ip6erspan | IPv6 | GRE + ERSPAN | IPv4/IPv6 |
Note: All configurations in this tutorial are volatile and won’t survive a server reboot
- If you want to make the configuration persistent across reboots, consider using a networking configuration daemon, such as NetworkManager, or distribution-specific mechanisms
If you want to learn more, read this article: Introduction to Linux interfaces for virtual networking