SATA: Unterschied zwischen den Versionen

Aus Foxwiki
Thomaskarras (Diskussion | Beiträge)
Thomaskarras (Diskussion | Beiträge)
Zeile 282: Zeile 282:
=== Slimline Connector ===
=== Slimline Connector ===
Der ''Slimline Connector'' ist ein erstmals in SATA 2.6 definierter Steckverbinder für „small-form-factor“-Geräte, wie beispielsweise SlimLine-CD/DVD-Laufwerke für Notebooks.
Der ''Slimline Connector'' ist ein erstmals in SATA 2.6 definierter Steckverbinder für „small-form-factor“-Geräte, wie beispielsweise SlimLine-CD/DVD-Laufwerke für Notebooks.
Der Slimline Connector besteht aus einem Signalsegment und einem Stromversorgungssegment mit folgender Belegung:
Der Slimline Connector besteht aus einem Signalsegment und einem Stromversorgungssegment.


==Links==
==Links==

Version vom 22. Februar 2021, 13:32 Uhr

SATA

Was ist SATA?

  • Die Abkürzung SATA steht für "Serial Advanced Technology Attachment" und ist eine Übertragungs-Technik für Festplatten und Wechselspeicher-Laufwerke.
  • Parallele Signalleitungen wurden auf seriellen Betrieb umgestellt, um die Datenübertragungsrate zu erhöhen.
  • eine Computer-Schnittstelle für den Datenaustausch mit Festplatten und anderen Speichergeräten.
  • Die erste Version von SATA wurde 2001 vorgestellt.
  • SATA-Kabel (Bild oben)



  • zwei nebeneinander liegende Anschlüsse auf dem Mainboard(Bild unten)












  • Serial-ATA-Festplatte mit Datenkabel (links) und Stromkabel (rechts)(Bild rechts)
  • üblich sind auch die Schreibweisen SATA und S-ATA
  • ATA/ATAPI/ATA steht hierbei für das Übertragungsprotokoll „IBM Personal Computer/AT/AT Attachment“
  • im Unterschied dazu werden bei SATA die Daten jedoch seriell übertragen.

Geschichte

  • Serial ATA wurde im Jahr 2000 von Intel aus dem älteren ATA/ATAPI/ATA-Standard entwickelt.
  • Daten werden von einem parallelen Bus zu einer bit-seriellen Punkt-zu-Punkt-Verbindung übertragen, d.h., die Daten werden seriell übertragen (Bit für Bit) und nicht in 16-Bit-"Wörtern".
  • SATA hat drei Hauptvorteile: höhere Datentransferrate, vereinfachte Kabelführung und der Austausch von Datenträgern im laufenden Betrieb (Hot-Plug).
  • Der ältere ATA-Standard wird retronym (nachträgliche Neubenennung) als Parallel ATA (PATA) bezeichnet.
  • Beide Anschlusstypen befanden sich zunächst parallel auf der Hauptplatine.
  • ATA/ATAPI/PATA-Anschlüsse werden seit 2010 zunehmend weggelassen.
  • Ein SATA-Anschluss auf der Hauptplatine ist also für nur ein Gerät vorgesehen.
  • Serial ATA ist nicht auf Festplatten beschränkt.
  • Mittels ATA/ATAPI/ATAPI-Protokoll können auch SATA-Bandlaufwerke, DVD-Laufwerke und Brenner oder Speicherkartenlesegeräte verwendet werden.
  • External Serial ATA (eSATA) steht oder stand zudem in Konkurrenz zu USB, FireWire und Thunderbolt.

Datenübertragungsraten

  • Steigt bei parallelen Datenbussen die Datenübertragungsrate, so verstärken sich zugleich Nebeneffekte, die einer weiteren Erhöhung der Übertragungsrate entgegenstehen.
  • Zu den unerwünschten Nebeneffekten gehören die zunehmende Asynchronität der parallelen Datenleitungen und das Übersprechen, d.h. die unerwünschte gegenseitige Beeinflussung zwischen den Leitungen.
  • Weiterhin schränken der beim ATA-Bus (Integrated Drive Electronics/IDE-Bus) nicht spezifizierte Bus-Abschluss und die massebezogenen Signale die verwendbare Kabellänge stark ein.
  • Serial ATA nutzt zur Vermeidung dieser Probleme eine serielle Übertragung und auf physikalischer Ebene das Low Voltage Differential Signaling (LVDS)[[1]].

Datenübertragungsgeschwindigkeit

  • Die erste Serial-ATA-Generation wurde mit einer Übertragungsrate von 1,2 Gbit/s spezifiziert und ist damit nur unwesentlich schneller als die schnellste parallele ATA-Schnittstelle (ATA/133).
  • Die Revision 2.0 verdoppelte den Datendurchsatz auf 2,4 Gbit/s.
  • Der aktuelle Standard Serial-ATA Revision 3.0 hat 4,8 Gbit/s Datendurchsatz
  • Die Hauptversionsnummer hat die Version 3.3 erreicht
  • SATA überträgt zur Taktrückgewinnung und zum Gleichspannungsausgleich die Daten kodiert.
  • Die Daten werden mit 10 Leitungsbits übertragen.
  • Eine SATA-1-Verbindung mit einem Leitungstakt von 1,5 GHz überträgt so 15 MByte/s (1,2 GBit/s).
  • Selbst die schnellsten Festplatten werden durch aktuelle SATA-Schnittstellen nicht ausgebremst (600 MByte/s).
  • Die SATA-Schnittstelle stellt also für Festplatten keinen "Flaschenhals" dar.
  • Ganz im Gegensatz zu Solid-State-Drives (SSDs), die bei Anbindung per PCI Express mittlerweile mit 2000 bis 5000 MByte/s drei- bis achtmal schneller als die schnellste SATA-Schnittstelle sind.

Technik

Datenbus ATA

  • Während beim ATA-Standard 16 parallele Datenleitungen zum Einsatz kamen, wird bei SATA nur ein Leitungspaar (differenzielle Übertragung) für jede Richtung verwendet.
  • Um bei ATA eine Übertragungsrate von 100 MB/s zu erreichen, war aufgrund der 16 Signalleitungen, der 16-Bit-Rahmen und der Double Data Rate nur ein Takt von 25 MHz nötig.
  • Das vereinfachte den Entwurf der elektronischen Bauteile, da die maximale Schaltzeit bei 20 ns (50 MHz) lag.
  • Problem: die synchrone Abtastung der 16 parallelen Bits.
  • Je höher die Taktrate, desto schwieriger ist es auszumachen, wann alle Bits zugleich stabil anliegen.
  • Ungenauigkeiten beim Kontaktieren der parallelen Stecker verstärken diesen Effekt.

Datenbus SATA

  • Bei SATA wird pro Richtung nur ein Leitungspaar für den Datentransport und für Bestätigungspakete vom Empfänger verwendet.
  • Es kommt eine 8b/10b-Kodierung zum Einsatz, und es wird pro Takt jeweils nur ein Bit übertragen.
  • Dadurch wird bei einer Datenrate von 150 MB/s ein Takt von 1500 MHz benötigt.
  • Die Zeit für den Datenempfang und die Quittierung beträgt damit 0,667 ns.
  • Die Schaltzeit liegt damit bei 0,273 ns.

Anschlussleitungen

Kabelunterschiede

  • Die Daten werden mittels eines flexiblen Kabels durch sieben Leiter mit flachen, 8 mm breiten Steckern auf jeder Seite übertragen.
  • Das Kabel kann bis zu 1 m lang sein, eSATA-Kabel bis zu 2 m und xSATA bis zu 8 m.
  • Im Vergleich zum 50,8 mm breiten, maximal 45 cm langen 40- oder 80-adrigen Übertragungskabel des parallelen ATA vereinfacht sich das Verkabeln von Komplettsystemen.
  • Verbesserung der Luftzirkulation innerhalb des Gehäuses.
  • Die Stecker sind kodiert, dadurch können die Kabel nicht verkehrt aufgesteckt werden
  • Ein Kritikpunkt am SATA-Stecker war die fehlende Verriegelung; Korrektur in der zweiten Revision.
  • Unabhängig von der Revision können jedoch die gleichen Kabel verwendet werden.

Spannungsversorgung

  • Der Standard sieht für SATA-Festplatten auch für die Spannungsversorgung spezielle Stecker vor. Sie sind ebenfalls flach, aber breiter als das SATA-Datenkabel.
  • Anders als bei IDE-Festplatten werden für 2,5″-Notebook- und 3,5″-Festplatten die gleichen Stecker verwendet.
  • Auf 15 Pins verteilt werden 3,3 V, 5 V und 12 V auf je drei nebeneinander liegenden Pins angelegt und über fünf Masse-Pins zurückgeführt.
  • Zugunsten der Kompatibilität mit älteren Netzteilen, die keine 3,3-V-Stränge für den Anschluss von Festplatten haben, nutzten 3,5″-SATA-Festplatten zunächst nur 5 V und 12 V.

Schlafmodus

  • 2,5″-Platten verzichten üblicherweise auf die Nutzung von 12 V, fast immer auch auf 3,3 V.
  • Nachdem sich die Versorgung mit 3,3 V nicht durchsetzen konnte, wurde sie in der SATA-Spezifikation 3.2 entfernt und einer der nun frei werdenden Pins mit DevSleep (besonders sparsamer "Schlafmodus" ) belegt.
  • Ein dort anliegender High-Pegel weist die Platte an, in einen sehr tiefen Schlafzustand zu gehen, der nur einige Milliwatt verbraucht.

Einschaltverhalten

  • Beim Hotplugging ist es erforderlich, Spannungseinbrüche des Netzteils durch eine plötzliche hohe Stromaufnahme des neu angeschlossenen Gerätes zu verhindern.
  • Die Buchse ist so konstruiert, dass zuerst Pin 4 und 12 den Massekontakt herstellen.
  • Anschließend findet zum strombegrenzten Pre-Charge der Elektronik zusammen mit den restlichen Masseleitungen je ein Pin pro Versorgungsspannung (3, 7, 13) als voreilender Kontakt.
  • Erst dann schließen die restlichen Pins, und die Platte geht in Betrieb.

Staggered Spin-up

  • Pin 11 des SATA-Stromsteckers kommt eine Doppelrolle zu: Über ihn kann von der Platte ein „Staggered Spin-up“ (gestaffeltes Hochfahren) gefordert werden (Eingang), und die Platte kann darüber eine LED zur Anzeige von Plattenaktivität ansteuern (Ausgang).
  • Er ist nicht dafür ausgelegt, eine LED direkt zu betreiben.
  • Beim Anschluss an gewöhnliche Netzteile liegt Pin 11 im Stecker an Masse, dann läuft die angeschlossene Platte beim Einschalten des Netzteils an, und eine LED kann nicht angesteuert werden.
  • In Disk-Arrays, welche Backplanes für die SATA-Schnittstellen verwenden, wird Pin 11 nicht oder nur hochohmig beschaltet.
  • Dann läuft eine Platte mit „Staggered-Spin-up“-Feature erst dann an, wenn der Host-Controller es anfordert.
  • Anschließend kann die Platte über denselben Pin und einen Verstärker in der Backplane eine LED ansteuern.
  • Der Anlaufstrom von Festplatten ist erheblich höher als der Betriebsstrom.
  • Indem der zentrale Steuerrechner in dem Disk-Array die einzelnen Platten nacheinander anlaufen lässt, kann der Einschaltstrom begrenzt werden. Das erlaubt eine effizientere Dimensionierung des Netzteils.

Slimline SATA

  • Slimline SATA wurde mit SATA 2.6 für kleinere Geräte mit geringerem Leistungsbedarf eingeführt, z. B. optische Laufwerke in Notebooks.
  • Die Stromversorgung ist nur sechspolig ausgeführt und liefert ausschließlich 5 Volt.

Jumper

  • Master/Slave-Beziehungen zw. den Geräten, wie beim P-ATA-Standard, wurden abgeschafft.
  • Serial ATA hat nur ein Gerät pro Kabel, daher sind auch keine Jumper-Einstellungen nötig.

Versionen des Serial-ATA-Standards

Bezeichnungen Netto-Datenrate
offiziell inoffiziell Gbit/s MB/s
Serial
ATA
1,5 Gbit/s II SATA-150 1,20 150
3,0 Gbit/s, SATA Revision 2.x I SATA-300 2,40 300
6,0 Gbit/s, SATA Revision 3.x SATA III, SATA-600 4,80 600
SATA
Express
8 Gbit/s (PCIe 3.x), SATA Revision 3.2 7,88 985
16 Gbit/s (PCIe 4.0), SATA Revision 3.2 15,76 1969

SATA I Serial ATA 1,5 Gbit/s

  • Die Spezifikation „SATA I“ ist keine gültige Bezeichnung für die Schnittstelle.
  • Serial ATA wurde 2002 von den Firmen APT Technologies, Dell, IBM, Intel, Seagate und Maxtor Corporation entwickelt (Serial ATA International Organization).
  • Der Datendurchsatz von SATA 1,5 Gbit/s liegt bei theoretischen 1,2 Gbit/s pro Richtung.
  • Durch SATA soll die Verbindung zwischen Laufwerken und das Austauschen von Komponenten im laufenden Betrieb vereinfacht werden.

SATA II SATA-300 Serial ATA 3,0 Gbit/s

  • Diese Spezifikation wird „SATA II“ genannt, zum Teil auch „SATA-300“. Das sind keine gültigen Bezeichnungen für die Schnittstelle.
  • Stattdessen empfiehlt die Serial ATA International Organization „SATA Revision 2.x“ oder „SATA 3 Gbit/s“.[[2]]
  • SATA 3,0 Gbit/s wurde Anfang 2005 eingeführt.
  • Der Datendurchsatz von SATA 3,0 Gbit/s liegt bei theoretischen 2,4 Gbit/s, also doppelt so hoch wie bei der ersten SATA-Generation.

Optionale Fähigkeiten

  • NCQ: Native Command Queuing: Mit diesem Standard wird die Verwaltung der Schreib- und Lesevorgänge optimiert und beschleunigt. NCQ muss von Festplatte, Controller (Hardware) und Treiber unterstützt werden.
  • eSATA: External SATA, für externe Laufwerke, maximale Kabellänge zwei Meter, Datenrate von 2,4 Gbit/s
  • HotSwap: Austausch des Laufwerks im laufenden Betrieb, ohne dass das System heruntergefahren werden muss
  • Staggered Spinup: Zeitverzögertes Einschalten mehrerer Laufwerke, um zum Beispiel das Netzteil nicht zu überlasten
  • Port Multiplier: Der Port-Multiplier wird mit einem SATA-Port des Rechners verbunden und bietet bis zu 15 Anschlüsse für SATA-Laufwerke.

Die Laufwerke teilen sich die verfügbare Übertragungsbandbreite. Wollen z.B. drei Laufwerke gleichzeitig mit 800 Mbit/s je Laufwerk übertragen, können diese eine 3-Gbit/s-Strecke auslasten.

  • Port Selector: Mit einem Port-Selector kann zwischen zwei redundanten Übertragungsstrecken umgeschaltet werden. So kann man das Problem Single-Point-of-Failure (Single Point of Failure/SPoF) umgehen.
  • Zwei Rechner können auf dasselbe Laufwerk zugreifen. Die beiden Rechner müssen allerdings selbst festlegen, wer jeweils aktiv ist (immer nur einer). Diese Auswahl bzw. Umschaltung kann durch nicht-spezifizierte Mechanismen erfolgen.
  • xSATA: Mit xSATA können die Laufwerke weiter entfernt (maximal acht Meter, wie bei Serial Attached SCSI) vom Rechner platziert sein als mit eSATA. Dazu benötigt man allerdings andere Kabel und Steckverbinder.
  • Diese Fähigkeiten sind nicht auf SATA-3,0-Gbit/s-Festplatten beschränkt, sie können auch von SATA-Festplatten der ersten Generation angeboten werden.[1]

eSATA External Serial ATA (eSATA)

SATA- (links) und eSATA-Stecker im Vergleich






Slotblech zum Anschluss externer SATA-Laufwerke (eSATA)






  • SATA wurde für den Anschluss von Geräten innerhalb eines Rechners geschaffen.
  • Deswegen verfügen die Kabel und Stecker nicht über die nötige Abschirmung gegen elektromagnetische Störungen.
  • Die Stecker haben keine ausreichende mechanische Belastbarkeit für den Betrieb außerhalb eines (abgeschirmten) Gehäuses.

externe Festplatte mit SATA

  • Mit einer SATA-Steckkarte wird ein SATA-Anschluss ins Innere des Gehäuses geführt und der andere durch das Slotblech, so dass direkt ein SATA-Kabel angeschlossen werden kann.
  • Kabelseitige Klammern an den Steckern dienen der Fixierung am Slotblech und verhinderten ein unabsichtliches Herausziehen des Kabels.
  • Diese Anschlussform eignete sich nur zum Anschluss von nackten Laufwerken, die nicht in externen Gehäusen lagen.

eSATA

  • Mit SATA Revision 2 wurden jedoch auch Kabel und Stecker für den externen Betrieb standardisiert: „External Serial ATA“, kurz „eSATA“.
  • Die dafür vorgesehenen Stecker sind nicht mit denen für den Betrieb innerhalb des Gehäuses kompatibel.
  • eSATA definiert abgeschirmte Kabel mit bis zu zwei Metern Länge und neue Stecker/Buchsen mit folgenden Eigenschaften:
  • Neue inkompatible Stecker/Buchsengeometrie ohne die L-Form der SATA-Stecker/Buchsen, was verhindert, dass versehentlich Kabel für den internen Betrieb extern verwendet werden.
  • Stecker und Buchse sind wie die Kabel geschirmt, um elektromagnetische Störungen zu verhindern.
  • Die Kontakte liegen tiefer in den Steckern/Buchsen, damit die Abschirmung sicheren Kontakt hat und statische Aufladung abfließen kann, bevor sich die Signalkontakte berühren.
  • Die Buchsen haben kleine Federn, um die mechanische Stabilität zu verbessern und versehentliches Herausziehen zu verhindern.
  • Stecker und Buchsen sollen mindestens 5000 Steckzyklen überstehen (SATA: min. 50).
  • Durch Verschärfung der elektrischen Anforderungen (leichte Erhöhung des Spannungslevels beim Sender, erhöhte Empfindlichkeit des Empfängerbausteins) soll die sichere Übertragung über zwei Meter erreicht werden.
  • Eine Stromversorgung des externen Gerätes über das eSATA-Kabel ist nicht möglich.
  • Es sind eSATA-Slotbleche erhältlich, deren Kabel auf die internen SATA-Buchsen der Hauptplatinen passen.
  • Die Abschirmung ist über das PC-Gehäuse gegeben.
  • Damit kann jede Hauptplatine auf eSATA adaptiert werden.
  • Jedoch bleibt die maximal erlaubte Kabellänge bei solchen Adaptern auf einen Meter (inklusive der Kabel vom Mainboard zum Slotblech) beschränkt.
  • Interne Anschlüsse erfüllen nicht die elektrischen Anforderungen für eSATA.
  • Hot-plug ist damit je nach Controller nicht möglich. In diesem Fall müssen eSATA-Geräte vor dem Hochfahren des Rechners angeschlossen werden und können erst nach dem Herunterfahren wieder entfernt werden.
  • Es sind eSATA-Sticks verfügbar, welche sich die hohen Datenraten von eSATA im Vergleich zu USB-Massenspeichern auch mobil zu Nutze machen.

eSATAp Power eSATA External Power over Serial AT(P)

  • Kombinierter eSATAp und USB 2.0-Stecker (Bild rechts)
  • Der eSATAp-Standard sollte bis Mitte 2008 standardisiert worden sein, was aber bis heute (Stand Ende Oktober 2010) noch nicht geschehen ist.r=Info zu eSATAp
  • Mittlerweile sind eSATAp-Geräte (Memory Sticks) auf dem Markt, deren Stecker USB-kompatibel und gleichzeitig eSATA-kompatibel sind.
  • Die eSATA-Nutzung benötigt aber zusätzlich eine Stromversorgung (z. B. Power over USB).
  • Auch entsprechende Karten mit eSATAp-Steckplätzen werden angeboten.
  • Mit Power eSATA versucht der Hardwarehersteller Micro-Star International(MSI) das Problem der fehlenden Stromversorgung zu lösen.
  • Bei diesem modifizierten eSATA-Anschluss wurde ein Teil der USB-Technik zur Stromversorgung in den eSATA-Anschluss eingebaut>.
  • Dazu gibt es auch die Erweiterung eSATApD von Delock, die neben 5 V auch 12 V verwendet und damit auch den Betrieb von 3,5″-Festplatten ohne zusätzliche Spannungsversorgung erlaubt.
  • An eine eSATAp-Buchse können meist auch USB-Geräte angeschlossen werden, worauf ein entsprechendes Logo hinweist.

SATA 6Gb/s SATA 6G SATA III SATA-600 Serial ATA 6,0 Gbit/s

  • Im August 2008 veröffentlichte die SATA-IO erste Details zur dritten Version des SATA-Protokolls, das abermals eine Verdopplung der Transferrate im Vergleich zu seinem Vorgänger vorsieht.
  • Am 27. Mai 2009 wurde die Fertigstellung des Standards bekanntgegeben.[2] Die Schnittstelle ist weiterhin abwärtskompatibel, was unter anderem durch die Beibehaltung des bisher verwendeten Steckertyps sichergestellt wird.
  • Zusätzlich wurden neue Steckverbindungen für 1,8″-Festplatten (in Low Insertion Force|LIF-Bauart) und für neue, nur 7 mm hohe optische Laufwerke definiert.
  • Weitere Neuerungen des Standards sind unter anderem Native Command Queuing|Native-Command-Queuing-Erweiterungen für isochrones Streaming und die Verwaltung ausstehender Befehle, sowie verbesserte Stromsparfunktionen.
  • Die nun auf 6,0 Gbit/s erhöhte Geschwindigkeit kommt primär den Solid-State-Drives zugute, da diese bereits 2010 die Geschwindigkeit der SATA Revision 2.0 voll ausnutzen konnten.
  • Von den konventionellen Festplatten können dagegen nur die schnellsten an die Grenzen des ersten Standards stoßen.
  • Auch die erste Festplatte nach Revision 3.0, die Seagate Barracuda XT 7200.12,[3] liegt mit 138 MB/s unterhalb dieser Grenze.
  • Allerdings profitiert bei beiden Laufwerkstypen zumindest der Festplattencache von der schnelleren Anbindung.
  • Der vollständige Name der neuen Norm lautet „Serial ATA International Organization: Serial ATA Revision 3.0“.
  • Als alternative Benennungen sieht die SATA-IO außerdem „SATA Revision 3.x“ und „SATA 6Gbit/s“ vor. „SATA III“ und „SATA-600“ sind hingegen keine normierten Bezeichnungen.[4]

SATA Express 8 Gbit/s und 16 Gbit/s

  • SATA 3.2 führt die neue Schnittstelle „SATA Express“ ein mit Übertragungsraten von 8 Gbit/s je PCIe-Lane.
  • SATA Express verwendet die Technologie von PCI Express 3.0.
  • Dieser Standard nützt vor allem bei Verwendung von Solid State Drives, die bereits die Bandbreite von SATA 6.0 Gbit/s ausschöpfen.
  • SATA Revision 3.2 mit „SATA Express“ wurde im August 2013 veröffentlicht.[5] SATA Express konnte sich am Markt nie durchsetzen und bis heute sind auch keine SATA-Express-Laufwerke im freien Handel erschienen.[6]

Anschlussvarianten

m

SATA-SSD mit externem Festplattengehäuse (Bild oben)

Adapter

mSATA an Standard-SATA-Anschluss (Bild Mitte)

mSATA-SSD-Modul (Bild unten)

mini-SATA (mSATA)

  • mSATA wurde im September 2009 von Samsung Electronics und der JEDEC Solid State Technology Association spezifiziert, um kleinere Speicher zu ermöglichen.
  • Physisch handelt es sich um den gleichen Anschluss wie bei Mini PCI Express, allerdings werden die Leitungen elektrisch wie SATA-Kabel angesteuert.
  • Dabei verwendet mSATA entweder die erste (1,5 Gbit/s), zweite (3,0 Gbit/s) oder dritte (6,0 Gbit/s) Revision der SATA-Spezifikation zur Übertragung der Signale.
  • Zu den ersten Produkten mit mSATA-Speicher gehören einige Notebooks von Dell und Lenovo und das MacBook Air der Serie 2010 von Apple, wobei das MacBook Air ein vom Standard abweichendes Format der SSD verbaut hat.
  • Bedingt durch die relativ späte Standardisierung sind auch viele Produkte auf dem Markt, die eigene, zu mSATA inkompatible Schnittstellen und Formfaktoren verwenden.

micro SATA

  • Der Anschluss war in Konkurrenz zum mSATA und sollte mit diesem nicht verwechselt werden. Der Anschluss wurde mit SATA 2.6 im Februar 2007 eingeführt.
  • Er war insbesondere für 1,8″-Festplatten/SSDs gedacht, ist aber seit etlichen Jahren komplett durch die M.2-Schnittstelle verdrängt worden.

Slimline Connector

Der Slimline Connector ist ein erstmals in SATA 2.6 definierter Steckverbinder für „small-form-factor“-Geräte, wie beispielsweise SlimLine-CD/DVD-Laufwerke für Notebooks. Der Slimline Connector besteht aus einem Signalsegment und einem Stromversorgungssegment.

Links

inter

extern

  1. https://de.wikipedia.org/wiki/Low_Voltage_Differential_Signaling
  2. http://translate.google.com/translate?hl=de&sl=auto&tl=de&u=https%3A%2F%2Fsata-io.org%2Fdevelopers%2Fsata-naming-guidelines
  1. Referenzfehler: Es ist ein ungültiger <ref>-Tag vorhanden: Für die Referenz namens naming wurde kein Text angegeben.