Ethernet: Unterschied zwischen den Versionen
Zeile 47: | Zeile 47: | ||
= TMP = | = TMP = | ||
=== Kontrollfragen === | === Kontrollfragen === | ||
Zeile 375: | Zeile 82: | ||
[[Kategorie:OSI:02]] | [[Kategorie:OSI:02]] | ||
= TMP = | = TMP = |
Version vom 18. Oktober 2022, 22:32 Uhr
topic kurze Beschreibung
Beschreibung
Installation
Anwendungen
Fehlerbehebung
Syntax
Optionen
Parameter
Umgebungsvariablen
Exit-Status
Konfiguration
Dateien
Sicherheit
Dokumentation
RFC
Man-Pages
Info-Pages
Siehe auch
Links
Projekt-Homepage
Weblinks
Einzelnachweise
Testfragen
Testfrage 1
Testfrage 2
Testfrage 3
Testfrage 4
Testfrage 5
TMP
Kontrollfragen
Was ist Ethernet?
Die am weitesten verbreitete Technologie für lokale Netzwerke.
Warum ist die Frame Mindestgröße wichtig?
Um die minimale Slot-Time zur Erkennung einer Kollision zu erreichen. Somit werden keine Daten ergänzt.
Was ist ein Bus in der Datenverarbeitung?
Ein Bus ist ein System zur Datenübertragung zwischen mehreren Teilnehmern über einen gemeinsamen Übertragungsweg
Links
Intern
Weblinks
- https://de.wikipedia.org/wiki/Ethernet Ethernet Wikipedia
- http://www.pinoy7.com/winnt/pt2_1.htm Brian Brown Network Topologies
- https://networkencyclopedia.com/100basetx/ Networkencyclopedia 100Base-TX
TMP
Ethernet
- Ethernet ist heute der verbreitetste Standard für lokale Netze (LANs)
Viele Hersteller unterstützen diese Art von Netzwerken mit Hard- und Software
- MAC-Adresse
Jede Ethernet-Schnittstelle, also die Netzwerkkarte oder der fest eingebaute Anschluss, ist mit einer weltweit einmaligen Identifikationsnummer ausgestattet, der sogenannten MAC-Adresse (für Media Access Control, einer der beiden Bestandteile der OSI-Netzzugangsschicht).
- Es handelt sich um eine 48 Bit lange Zahl, die in sechs hexadezimalen Blöcken zwischen 0 und 255 (00 bis FF hex) geschrieben wird, zum Beispiel 00-A0-C9-E8-5F-64.
- Frames
Die Datenpakete – auf der Netzzugangsschicht Frames genannt – werden mit den MAC-Adressen der sendenden und der empfangenden Station versehen und in der Regel an alle Stationen im Segment versandt.
- Jede Station überprüft daraufhin, ob die Daten für sie bestimmt sind.
- Im Übrigen kann man Ethernet-Schnittstellen auch in den »Promiscuous Mode« schalten, in dem sie ohne Unterschied alle Daten entgegennehmen.
- Auf diese Weise kann der gesamte Datenverkehr in einem Netzsegment überwacht werden.
Die MAC-Adresse wird normalerweise nicht über das jeweilige Teilnetz hinaus weiterverbreitet.
Ausnahmen Das im weiteren Verlauf des Kapitels beschriebene IPX/SPX-Protokoll verwendet die MAC-Adresse auch für die Adressierung auf der Netzwerkschicht, und die IP-Weiterentwicklung IPv6 benutzt die MAC-Adresse als Teil der 128 Bit langen IP-Adresse.]
Nach außen ergäbe ihre Verwendung auch keinen Sinn, da das nächste Teilnetz auf einer Route womöglich noch nicht einmal zum Ethernet-Standard gehört.
CSMA/CD
Es ist wichtig, zu verstehen, dass mit dem Namen Ethernet gar keine einheitliche Netzwerkhardware bezeichnet wird.
- Vielmehr handelt es sich um einen Sammelnamen für diverse Netzwerkstandards, die ein bestimmtes Netzzugangsverfahren verwenden.
- Insofern sind alle Ethernet-Varianten auf der OSI-Schicht 2 identisch, unterscheiden sich aber auf der untersten Schicht.
Als der Vorläufer von Ethernet Ende der 60er-Jahre des vorigen Jahrhunderts an der Universität von Hawaii konzipiert wurde (anfangs unter dem geografisch passenden Namen ALOHANet), handelte es sich zunächst um Datenfunk.
- Diesem Umstand ist übrigens auch der endgültige Name zu verdanken: ether, zu Deutsch Äther, ist das gedachte Medium, durch das sich Funkwellen fortpflanzen.
- Erst in den 70er-Jahren wurde dasselbe Netzzugangsverfahren auch für die Datenübertragung per Kabel eingesetzt, und zwar zunächst über Koaxialkabel.
Das gemeinsame Netzzugangsverfahren aller Ethernet-Formen trägt den Namen CSMA/CD: Carrier Sense Multiple Access with Collision Detection.
- Schematisch gesehen funktioniert dieses Verfahren wie folgt
- Ein Gerät, das Daten senden möchte, lauscht den Netzabschnitt ab, um festzustellen, ob dieser gerade frei ist, das heißt, ob gerade kein anderes Gerät sendet (Carrier Sense).
- Wurde in Schritt 1 festgestellt, dass der Netzabschnitt frei ist, beginnt die Station mit dem Senden der Daten.
- Möglicherweise hat auch eine andere Station festgestellt, dass das Netz frei ist, und beginnt gleichzeitig ebenfalls mit dem Senden (Multiple Access).
- Falls auf die beschriebene Art und Weise zwei Stationen gleichzeitig mit dem Senden begonnen haben, findet eine sogenannte Datenkollision statt, die von den beteiligten Stationen entdeckt wird (Collision Detection).
- Eine Station, die eine Kollision bemerkt, stellt das Senden von Nutzdaten ein und versendet stattdessen eine Warnmeldung (Jam Signal).
- Eine Station, die wegen einer Datenkollision das Senden abgebrochen hat, beginnt nach einer zufällig gewählten Zeitspanne von wenigen Millisekunden erneut mit dem Senden.
- Genau diese Zufälligkeit der Zeitspanne, die nach einem komplizierten Verfahren berechnet wird, ist enorm wichtig, damit die beiden Stationen beim nächsten Versuch nicht wieder genau gleichzeitig mit dem Senden beginnen.
Das große Problem von Ethernet besteht darin, dass das CSMA/CD-Verfahren umso ineffektiver wird, je frequentierter der jeweilige Netzabschnitt ist: Ab einem gewissen Grenzwert überschreitet die Anzahl der Datenkollisionen die Menge der Nutzdaten.
- Heutzutage umgeht man dieses Problem in der Regel durch die Verwendung sogenannter Switches, die für zwei miteinander kommunizierende Stationen jeweils eine exklusive Punkt-zu-Punkt-Verbindung einrichten.
- Wo diese Möglichkeit aufgrund veralteter, inkompatibler Hardware nicht zur Verfügung steht, muss ein Netz mit viel Datenverkehr stattdessen segmentiert, das heißt in kleinere Abschnitte unterteilt werden.
Ethernet-Hardware
Die Bezeichnungen der verschiedenen Arten der Hardware, die für Ethernet-Netzwerke verwendet werden, setzen sich aus der Übertragungsgeschwindigkeit des jeweiligen Netzes in MBit/s und einer spezifischen Bezeichnung für den Kabeltyp oder die maximal zulässige Kabellänge zusammen.
Wie bereits erwähnt, waren Koaxialkabel die ersten für Ethernet verwendeten Kabel.
Die Verwendung von Koaxialkabeln für Ethernet ist weitgehend historisch, interessant ist die Entwicklung dennoch; sie erklärt, warum bei Ethernet Dinge so und nicht anders gelöst wurden.
- Aufbau dieser Kabel
- Im Zentrum befindet sich ein leitender Draht, der von einer Isolationsschicht umgeben ist, darüber befindet sich ein weiterer Ring aus leitendem Metall und außen natürlich wiederum eine Isolationsschicht.
- Das bekannteste Alltagsbeispiel für ein Koaxialkabel ist ein handelsübliches Fernsehantennenkabel.
Es gibt zwei Arten von Koaxialkabeln, die für Ethernet eingesetzt werden:
- 10Base2: dünnes schwarzes Koaxialkabel
- Die 10 steht für die maximale Datenübertragungsgeschwindigkeit des Netzes, in diesem Fall 10 MBit/s.
- Die nähere Spezifikation, die durch die 2 angegeben wird, betrifft die maximal zulässige Gesamtlänge eines 10Base2-Netzsegments von etwa 200 Metern (eigentlich 200 Yard, was ca. 185 Metern entspricht).
- In einem Segment dürfen sich maximal 30 Stationen befinden.
- Um eine größere Entfernung zu überbrücken oder mehr Stationen zu betreiben, muss eine Signalverstärkung durch sogenannte Repeater durchgeführt werden.
Alternative Bezeichnungen für diese Ethernet-Form sind Thinnet Coaxial oder Cheapernet, weil es sich früher um die billigste Art der Vernetzung handelte.
An der Netzwerkkarte wird an eine BNC-Buchse ein T-Adapter angeschlossen. - An dessen beiden Seiten werden wiederum über BNC-Stecker die Koaxialkabel angeschlossen, die zu den T-Stücken der Netzwerkkarten der benachbarten Rechner führen.
- Der Mindestabstand zwischen zwei T-Stücken, das heißt die minimale Länge eines einzelnen Kabels, beträgt 50 cm.
- Das Netzwerk ist in einer Bus-Topologie organisiert; die T-Stücke des ersten und des letzten Rechners im Netzwerk werden auf je einer Seite mit einem Abschlusswiderstand oder Terminator versehen.
- 10Base5: dickes gelbes KoaxialkabelDer Vorteil dieser auch Thicknet Coaxial genannten Variante besteht in der größeren zulässigen Länge des Netzsegments, nämlich – wie die Zahl 5 vermuten lässt – 500 Yard (knapp 460 m).
- Andererseits ist dieses erheblich dickere Kabel weniger flexibel als das dünnere 10Base2.
- Beispielsweise ist es schwieriger, solche Kabel durch verwinkelte Kabelkanäle zu ziehen.
Auf dem Kabel sitzen bei dieser Ethernet-Form sogenannte Transceiver, die über 15-polige Buchsen an die Netzwerkkarten angeschlossen werden. - Zwischen zwei Transceivern muss ein Mindestabstand von 2,5 Metern eingehalten werden; das Kabel enthält ab Werk Markierungen in diesem Abstand.
- Die Transceiver werden an diesen Stellen einfach in das Kabel hineingebohrt (deshalb werden sie als Vampirabzweige bezeichnet).
- In einem Segment dürfen sich maximal 100 davon befinden.
- Auch dieses Netz ist busförmig, und beide Enden müssen durch Abschlusswiderstände terminiert werden.
- Ethernet über Twisted-Pair-Kabel
- Bei dieser Kabelsorte handelt es sich um einen verdrillten Kupfer-Zweidrahtleiter: Je zwei isolierte Kupferdrähte werden umeinandergewickelt.
- Dies verhindert die gegenseitige Beeinträchtigung der Signalqualität, die bei parallel zueinander verlaufenden Kabeln durch die elektromagnetischen Felder aufträte.
- In einem Twisted-Pair-Kabel verlaufen üblicherweise vier, manchmal auch acht solcher Doppeladern nebeneinander.
- Sie enden auf beiden Seiten in einem RJ-45-Stecker, der auch für ISDN-Anschlüsse verwendet wird.
- Bekannt sind solche Kabel vor allem durch ihre Verwendung als Telefonleitungen.
Man unterscheidet zwei verschiedene Grundarten von Twisted-Pair-Kabeln:
- UTP oder Unshielded Twisted Pair ist ein nicht abgeschirmter Zweidrahtleiter
- STP (Shielded Twisted Pair) ein abgeschirmter, der eine höhere Signalqualität aufweist, sodass er etwa größere Entfernungen überbrücken kann.
Twisted-Pair-Kabel werden in verschiedene Kategorien unterteilt, die unterschiedliche maximale Datenübertragungsraten erlauben
- Twisted-Pair Kabelkategorien
Kategorie | Übertragungsrate | Verwendungszweck |
1 | nicht festgelegt | Telefonie |
2 | 4 MBit/s | ISDN |
3 | 10 MBit/s | Ethernet; Token Ring |
4 | 16 MBit/s | verschiedene |
5 | 100 MBit/s | Fast Ethernet; allgemeiner Standard |
6 | 200 MBit/s | verschiedene |
7 | 600 MBit/s | verschiedene |
- Über Twisted Pair verkabelten Arten von Ethernet weisen eine sternförmige Topologie auf zumindest im physischen Sinn
- Alle Stationen werden jeweils über ein eigenständiges Kabel an einen zentralen Verteiler angeschlossen.
- Der Vorteil dieser Form der Vernetzung besteht grundsätzlich darin, dass der Ausfall einer einzelnen Verbindung zwischen einem Rechner und dem Verteiler nicht zur Unterbrechung des gesamten Netzes führt, wie es beim busförmigen Koaxialkabel-Ethernet der Fall ist.
Der zentrale Verteiler wird in seiner einfacheren Form Hub genannt, die etwas teurere, aber leistungsfähigere Bauweise heißt Switching Hub oder kurz Switch.
- Die innere Struktur des Hubs ist letztlich busförmig, sodass es genau wie bei der Vernetzung über Koaxialkabel zu Datenkollisionen kommen kann.
- Ein Switch stellt dagegen für zwei Stationen, die miteinander kommunizieren möchten, eine exklusive Punkt-zu-Punkt-Verbindung bereit.
- Dies geschieht dadurch, dass ein Switch die MAC-Adressen aller Schnittstellen zwischenspeichert, an die er bereits Daten ausgeliefert hat, und auf diese Weise die restlichen Stationen nicht mehr mit Daten behelligen muss, die gar nicht für sie bestimmt sind.
- Da die Preise für Netzwerkzubehör in den letzten Jahren stark gesunken sind, gibt es eigentlich keinen Grund mehr, etwas anderes als einen Switch einzusetzen.
Bei einem Hub teilen sich alle Stationen die gesamte Übertragungsgeschwindigkeit, beim Switch steht sie dagegen jeder einzelnen Verbindung zur Verfügung.
- Im Übrigen gibt es besondere Hubs, die als Bridges bezeichnet werden.
- Sie verbinden Ethernet-Netzwerke verschiedenen Typs miteinander, sie besitzen etwa eine Reihe von RJ-45-Ports für Twisted-Pair-Kabel und zusätzlich einen Anschluss für 10Base2-BNC-Kabel; oder sie unterstützen einfach verschiedene maximale Übertragungsgeschwindigkeiten.
Hubs oder Switches weisen in der Regel 5 bis 24 Anschlüsse (Ports) auf, an die jeweils ein Gerät angeschlossen werden kann.
- Um Netzwerke mit mehr Geräten zu betreiben, sind diese Geräte kaskadierbar
- Die meisten Hubs oder Switches besitzen einen speziellen Port, den sogenannten Uplink-Port, der über ein Kabel mit einem normalen Port eines weiteren Verteilers verbunden werden kann.
- Bei vielen Hubs/Switches kann ein einzelner Port über einen Schalter zwischen »Normal« und »Uplink« umgeschaltet werden.
Die einzige Ausnahme von der allgemeinen Regel, dass ein Hub oder Switch benötigt wird, bildet der Sonderfall, in dem nur zwei Rechner miteinander vernetzt werden sollen:
- Die beiden Stationen können unmittelbar über ein sogenanntes Crosslink-Kabel verbunden werden.
- Dieses spezielle Kabel besitzt überkreuzte Anschlusspaare anstelle der geradlinig verlaufenden bei normalen Twisted-Pair-Kabeln.
Historisch betrachtet existieren zwei Arten von Ethernet über Twisted Pair, die unterschiedliche Übertragungsgeschwindigkeiten unterstützen:
- 10BaseT: Die Datenübertragungsrate beträgt 10 MBit/s.
- 100BaseT (auch Fast Ethernet genannt): Daten werden mit bis zu 100 MBit/s übertragen; hierzu sind mindestens UTP-Kabel der Kategorie 5 erforderlich.
- Genauer gesagt gibt es zwei Unterarten: 100BaseTX ist voll kompatibel mit 10BaseT, sodass das Netz schrittweise umgerüstet werden kann.
- 100BaseT4 verwendet dagegen alle vier Kupferdrahtpaare eines Twisted-Pair-Kabels und ist mit den anderen Standards inkompatibel; in der Praxis spielt es keine Rolle mehr.
Die meisten Netzwerkkarten, Hubs und Switches, die heute verkauft werden, unterstützen beide Übertragungsraten.
- Der zu verwendende Wert kann bei vielen Netzwerkkarten per Software eingestellt werden, häufiger wird er automatisch gewählt.
- Natürlich sollten Sie prinzipiell darauf achten, keine reine 10-MBit-Hardware mehr zu kaufen.
- Aber möglicherweise hat 100-MBit-Hardware der ersten Generation, die nicht auf 10 MBit/s heruntergeschaltet werden kann, sogar noch schlimmere Einschränkungen zur Folge.
- Zwar ist es bei normalen Standard-PCs ein Leichtes, die Netzwerkkarte gegen ein neueres Modell auszutauschen, um die Kompatibilität zu einer aktualisierten Netzwerkumgebung aufrechtzuerhalten, aber bei anderen Geräten wie beispielsweise Netzwerkdruckern oder kompakten Router-Boxen ist das eventuell nicht möglich.
- Solche Geräte sind mit einem reinen 100er-Netz eventuell nicht mehr kompatibel.
Noch neuere Formen von Ethernet erreichen Übertragungsraten von 1.000 MBit/s (Gigabit-Ethernet), entweder über Lichtwellenleiter (1000BaseFL für »Fiber Logic«) oder über mehradrige Twisted-Pair-Kabel (1000BaseTX).
- Bereits entwickelt, aber noch nicht weitverbreitet, sind Ethernet-Varianten mit 10 oder gar 100 GBit/s – anfangs nur über verschiedene Arten von Lichtwellenleitern, aber inzwischen ebenfalls über Twisted Pair.