Skript/Kryptografie: Unterschied zwischen den Versionen

Aus Foxwiki
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 1: Zeile 1:
= Grundlagen und Einführung =
= Grundlagen und Einführung =
{{:Kryptografie}}
{{:Kryptografie}}
 
= Kerckhoffs’ Prinzip =
{{:Kerckhoffs’ Prinzip}}
 
= Kryptokonzept =
= Kryptokonzept =
{{:Kryptokonzept}}
{{:Kryptokonzept}}


[[Kategorie:Skript]]
[[Kategorie:Skript]]

Version vom 31. Mai 2023, 09:53 Uhr

Grundlagen und Einführung

Kryptografie - Umwandlung von Klartext in Geheimtext

Beschreibung

Kryptografie ist die von einem Schlüssel abhängige Umwandlung von „Klartext“ genannten Daten in einen „Geheimtext“ sodass der Klartext aus dem Geheimtext nur unter Verwendung eines geheimen Schlüssels wiedergewonnen werden kann.

Griech. krypto (geheim), graph (Schrift)
  • Kryptografie behandelt die Kryptografie (encryption) einer Informationen vom Klartext (plain text) in eine nicht verständliche Darstellung (Verschlüsselter Text)
  • Kryptografie muss so erfolgen, dass Befugte die Information bei einer Entschlüsselung wieder lesen können (decryption)
Kryptografie wir oft zur Authentifizierung eingesetzt
  • Dabei werden die verschlüsselten Texte mit gespeicherten Texten verglichen
  • Dabei wird verglichen, ob sie gleich sind oder Abweichungen enthalten
Kryptografie ist eine elementare Technologie zum Aufbau sicherer Netzwerke

Wesentliche Technologien

Kryptografie ist ein Teilbereich der Kryptologie
  • die auch Kryptoanalyse behandelt
Disziplinen der theoretischen Mathematik
  • Vertraulichkeit eines Texts garantieren oder brechen
Durch Kryptografie wird aus einem Klartext mithilfe eines Schlüssels ein Geheimtext erzeugt

Kryptografie, Chiffrierung, Kryptierung

Von einem Schlüssel abhängige Umwandlung von „Klartext“ genannten Daten in einen „Geheimtext“ (auch „Chiffrat“ oder „Schlüsseltext“ genannt), so dass der Klartext aus dem Geheimtext nur unter Verwendung eines geheimen Schlüssels wiedergewonnen werden kann.

Geheimhaltung

Kryptografie dient zur Geheimhaltung von Nachrichten, beispielsweise um Daten gegen unbefugten Zugriff abzusichern oder um Nachrichten vertraulich zu übermitteln.

  • Die Wissenschaft des Verschlüsselns wird als Kryptographie bezeichnet.
Informationssicherheit

Die Informationssicherheit nutzt die Kryptografie, um verwertbare Informationen in eine Form umzuwandeln, die sie für jeden anderen als einen autorisierten Benutzer unbrauchbar macht; dieser Vorgang wird Verschlüsselung genannt.

  • Informationen, die verschlüsselt (unbrauchbar) gemacht wurden, können von einem autorisierten Benutzer, der im Besitz des Kryptographieschlüssels ist, durch den Prozess der Entschlüsselung wieder in ihre ursprüngliche nutzbare Form zurückverwandelt werden.
  • Die Kryptografie wird in der Informationssicherheit eingesetzt, um Informationen vor unbefugter oder versehentlicher Offenlegung zu schützen, während die Informationen übertragen werden (entweder elektronisch oder physisch) und während die Informationen gespeichert werden.

Anwendungen

Die Kryptografie bietet der Informationssicherheit auch andere nützliche Anwendungen, darunter verbesserte Authentifizierungsmethoden, Nachrichten-Digests, digitale Signaturen, Nichtabstreitbarkeit und verschlüsselte Netzwerkkommunikation.

  • Ältere, weniger sichere Anwendungen wie Telnet und File Transfer Protocol (FTP) werden langsam durch sicherere Anwendungen wie Secure Shell (SSH) ersetzt, die eine verschlüsselte Netzwerkkommunikation verwenden.
  • Drahtlose Kommunikation kann mit Protokollen wie WPA/WPA2 oder dem älteren (und weniger sicheren) WEP verschlüsselt werden.
  • Die drahtgebundene Kommunikation (wie ITU-T G.hn) ist durch den AES zur Verschlüsselung und X.1035 zur Authentifizierung und zum Schlüsselaustausch gesichert.
  • Softwareanwendungen wie GnuPG oder PGP können zur Verschlüsselung von Dateien und E-Mails verwendet werden.

Sicherheitsprobleme

Kryptografie kann Sicherheitsprobleme verursachen, wenn sie nicht korrekt implementiert wird.

  • Kryptografische Lösungen müssen mit branchenweit anerkannten Lösungen implementiert werden, die von unabhängigen Kryptografieexperten einer strengen Prüfung unterzogen wurden.
  • Die Länge und Stärke des Verschlüsselungsschlüssels ist ebenfalls ein wichtiger Aspekt.
  • Ein zu schwacher oder zu kurzer Schlüssel führt zu einer schwachen Verschlüsselung.
  • Die für die Ver- und Entschlüsselung verwendeten Schlüssel müssen mit der gleichen Strenge geschützt werden wie alle anderen vertraulichen Informationen.

Sie müssen vor unbefugter Offenlegung und Zerstörung geschützt werden und bei Bedarf verfügbar sein.

Grundlagen

Verschlüsseln

Durch Verschlüsseln wird ursprünglich der „offene Wortlaut“ eines Textes, genannt „Klartext“, in eine unverständliche Zeichenfolge umgewandelt, die als „Geheimtext“ bezeichnet wird.

  • Die Fachbegriffe Klartext und Geheimtext sind historisch gewachsen und heutzutage deutlich weiter zu interpretieren.
  • Außer Textnachrichten lassen sich auch alle anderen Arten von Information verschlüsseln, beispielsweise Sprachnachrichten, Bilder, Videos oder der Quellcode von Computerprogrammen.
  • Die kryptographischen Prinzipien bleiben dabei die gleichen.
Kryptographisches Codebuch aus dem amerikanischen Bürgerkrieg
Eine besondere und relativ einfache Art der Kryptografie ist die Codierung (auch: Kodierung).
  • Hierbei werden in der Regel nicht einzelne Klartextzeichen oder kurze Zeichenkombinationen verschlüsselt, sondern ganze Worte, Satzteile oder ganze Sätze.
  • Beispielsweise können wichtige Befehle wie „Angriff im Morgengrauen!“ oder „Rückzug von den Hügeln!“ bestimmten Codewörtern oder unverständlichen Zeichenkombinationen aus Buchstaben, Ziffern oder anderen Geheimzeichen zugeordnet werden.
  • Dies geschieht zumeist als tabellarische Liste, beispielsweise in Form von Codebüchern.
Zur Steigerung der kryptographischen Sicherheit von Codes werden die damit erhaltenen Geheimtexte oft einem zweiten Kryptografiechritt unterworfen.
  • Dies wird als Überschlüsselung (auch: Überverschlüsselung) bezeichnet.
  • Außer geheimen Codes gibt es auch offene Codes, wie den Morsecode und ASCII, die nicht kryptographischen Zwecken dienen und keine Kryptografie darstellen.

Schlüssel

Der entscheidende Parameter bei der Kryptografie ist der „Schlüssel“.
  • Die gute Wahl eines Schlüssels und seine Geheimhaltung sind wichtige Voraussetzungen zur Wahrung des Geheimnisses.
  • Im Fall der Codierung stellt das Codebuch den Schlüssel dar.
  • Im Fall der meisten klassischen und auch einiger moderner Methoden zur Kryptografie ist es ein Passwort (auch: Kennwort, Schlüsselwort, Codewort oder Kodewort, Losung, Losungswort oder Parole von italienisch la parola „das Wort“.
Bei vielen modernen Verfahren, beispielsweise bei der E-Mail-Kryptografie, wird dem Benutzer inzwischen die Wahl eines Schlüssels abgenommen.
  • Dieser wird automatisch generiert, ohne dass der Nutzer es bemerkt.
  • Hierdurch wird auch der „menschliche Faktor“ eliminiert, nämlich die nicht selten zu sorglose Wahl eines unsicheren, weil zu kurzen und leicht zu erratenden, Passworts.

Entschlüsseln

Der zur Kryptografie umgekehrte Schritt ist die Entschlüsselung.
Geht der Schlüssel verloren, dann lässt sich der Geheimtext nicht mehr entschlüsseln
  • Gerät der Schlüssel in fremde Hände, dann können auch Dritte den Geheimtext lesen, das Geheimnis ist also nicht länger gewahrt.
  • Ein zusammenfassender Begriff für Verschlüsseln und/oder Entschlüsseln ist das Schlüsseln.

Entziffern

Sprachlich zu trennen von der Entschlüsselung ist der Begriff der „Entzifferung“.
  • Als Entzifferung wird die Kunst bezeichnet, dem Geheimtext seine geheime Nachricht zu entringen, ohne im Besitz des Schlüssels zu sein.
  • Dies ist die Tätigkeit eines Kryptoanalytikers, häufig auch als „Codeknacker“ () bezeichnet.
  • Im Idealfall gelingt keine Entzifferung, weil das Kryptografieverfahren ausreichend „stark“ ist.
  • Es wird dann als „unbrechbar“ oder zumindest als „kryptographisch stark“ bezeichnet.
  • Im Gegensatz zu einer „starken Kryptografie“ lässt sich eine „schwache Kryptografie“ ohne vorherige Kenntnis des Schlüssels mit vertretbarem Aufwand mithilfe kryptanalytischer Methoden brechen.
  • Durch Fortschritte in der Kryptologie kann sich eine vermeintlich starke Kryptografie im Laufe der Zeit als schwach erweisen.
  • So galt beispielsweise die „Vigenère-Kryptografie“ über Jahrhunderte hinweg als „Le Chiffre indéchiffrable“ („Die unentzifferbare Kryptografie“).
  • Inzwischen weiß man, dass sie das nicht ist.
Kryptanalyse/Kryptoanalyse

Arbeitsgebiet, das sich mit der Entzifferung von Geheimtexten befasst

  • Sie ist neben der Kryptographie das zweite Teilgebiet der Kryptologie.
  • Die Kryptanalyse dient nicht nur zur unbefugten Entzifferung von Geheimnachrichten, sondern sie befasst sich auch mit „(Un-)Brechbarkeit“ von Kryptografieen, also der Prüfung der Sicherheit von Kryptografieverfahren gegen unbefugte Entzifferung.
Die meisten Kryptografieverfahren sind nur pragmatisch sicher, was bedeutet, dass bei ihrer Kryptanalyse keine praktikable Möglichkeit zur Entzifferung gefunden wurde.
  • Dabei ist das Vertrauen in die Sicherheit umso mehr gerechtfertigt, je länger ein Verfahren bereits öffentlich bekannt ist und je verbreiteter es in der Anwendung ist, denn umso mehr kann man davon ausgehen, dass viele fähige Kryptologen es unabhängig voneinander untersucht haben und dass eine eventuell vorhandene Schwäche gefunden und veröffentlicht worden wäre (siehe auch Kerckhoffs’ Prinzip).
Es gibt Verfahren, deren Sicherheit unter Annahme der Gültigkeit bestimmter mathematischer Vermutungen beweisbar ist.
  • So kann zum Beispiel für das RSA gezeigt werden: Der private Schlüssel eines Benutzers kann aus dessen öffentlichem Schlüssel genau dann effizient berechnet werden, wenn man eine große Zahl (in der Größenordnung von einigen hundert Dezimalstellen) effizient in ihre Primfaktoren zerlegen kann.
  • Das einzige Kryptografieverfahren, dessen Sicherheit wirklich bewiesen und nicht nur auf Vermutungen zurückgeführt wurde, ist das One-Time-Pad.

Beispiel

Caesar-Kryptografie mit Schlüssel „C“
Caesar-Kryptografie

Als Beispiel einer Kryptografie wird der unten in Kleinbuchstaben stehende Klartext mithilfe eines sehr alten und äußerst simplen Verfahrens, der Caesar-Kryptografie, in einen Geheimtext (hier wie in der Kryptografie üblich in Großbuchstaben) umgewandelt.

  • Als geheimer Schlüssel wird hier „C“ benutzt, also der dritte Buchstabe des lateinischen Alphabets.
  • Das bedeutet die Ersetzung jedes einzelnen Klartextbuchstabens durch den jeweiligen im Alphabet um drei Stellen verschobenen Buchstaben.
  • So wird aus einem „a“ des Klartextes der im Alphabet drei Stellen später stehende Buchstabe „D“ im Geheimtext, aus „b“ wird „E“ und so weiter.

Wenn man über das Ende des Alphabets hinauskommt, beginnt man wieder am Anfang; aus „z“ etwa wird somit „C“:

kommeumachtzehnuhrmitdenplaenenzurkapelle
NRPPHXPDFKWCHKQXKUPLWGHQSODHQHQCXUNDSHOOH
Der mit „NRPPH“ beginnende Geheimtext ist auf den ersten Blick unverständlich.
  • Das Verfahren eignet sich somit, um die im Klartext enthaltene Information vor Unbefugten zu verbergen.
  • Kennt ein möglicher Angreifer das zugrundeliegende Kryptografieverfahren nicht, oder gelingt es ihm nicht, den benutzten Schlüssel zu finden, dann bleibt der Geheimtext für ihn ohne Sinn.
  • Natürlich ist die hier benutzte Methode, die schon die alten Römer kannten, sehr schwach.
  • Einem erfahrenen Codebrecher wird es nicht viel Mühe bereiten, den Geheimtext nach kurzer Zeit zu entziffern, auch ohne vorherige Kenntnis von Schlüssel oder Verfahren.
Im Laufe der Geschichte der Menschheit wurden daher immer stärkere Methoden zur Kryptografie entwickelt

Klassifizierung

Prinzipiell unterscheidet man
Erst seit wenigen Jahrzehnten bekannt
Klassische Kryptografieverfahren können nach dem verwendeten Alphabet klassifiziert werden.

Symmetrisch

Bei der symmetrischen Kryptografie dient der Schlüssel auch zur Entschlüsselung

Symmetrische Kryptografieverfahren verwenden zur Ver- und Entschlüsselung den gleichen Schlüssel

Historischen Verfahren

Bei historischen Verfahren lassen sich zwei Kryptografieklassen unterscheiden

  • Bei der ersten werden, wie bei der im Beispiel benutzten Caesar-Kryptografie, die Buchstaben des Klartextes einzeln durch andere Buchstaben ersetzt.
  • Mit dem lateinischen Wort substituere (deutsch: „ersetzen“) werden sie als Substitutionsverfahren bezeichnet.
  • Im Gegensatz dazu bleibt bei der zweiten Kryptografieklasse, genannt Transposition (von lateinisch: transponere; deutsch: „versetzen“), jeder Buchstabe wie er ist, aber nicht wo er ist.
  • Sein Platz im Text wird verändert, die einzelnen Buchstaben des Textes werden sozusagen durcheinandergewürfelt.
  • Eine besonders einfache Form einer Transpositions-Kryptografie ist die bei Kindern beliebte „Revertierung“ (von lateinisch: reverse; deutsch: „umkehren“) eines Textes.
  • So entsteht beispielsweise aus dem Klartext „GEHEIMNIS“ der Geheimtext „SINMIEHEG“.
Modernen symmetrischen Verfahren

Bei modernen symmetrischen Verfahren werden Stromverschlüsselung und auf einer Blockverschlüsselung basierende Verfahren unterschieden.

  • Bei der Stromverschlüsselung werden die Zeichen des Klartextes jeweils einzeln und nacheinander verschlüsselt.
  • Bei einer Blockverschlüsselung hingegen wird der Klartext vorab in Blöcke einer bestimmten Größe aufgeteilt.
  • Wie dann die Blöcke verschlüsselt werden, bestimmt der Betriebsmodus der Kryptografiemethode.

Interessanterweise beruhen selbst moderne Blockchiffren, wie beispielsweise das über mehrere Jahrzehnte gegen Ende des 20. Jahrhunderts zum Standard erhobene Kryptografieverfahren DES (Data Encryption Standard) auf den beiden klassischen Methoden Substitution und Transposition.

  • Sie verwenden diese beiden Grundprinzipien in Kombination und beziehen ihre Stärke ganz maßgeblich durch die mehrfache wiederholte Anwendung von solchen Kombinationen nicht selten in Dutzenden von „Runden“.
  • So wird, vergleichbar zum wiederholten Kneten von Teig, der Klartext immer stärker verschlüsselt.
  • Die Stärke der Kryptografie steigt zumeist mit der Anzahl der verwendeten Runden.

siehe Symmetrisches Kryptosystem

Asymmetrisch

Bei der asymmetrischen Kryptografie gibt es zwei unterschiedliche Schlüssel, den öffentlichen Schlüssel zur Kryptografie und den privaten Schlüssel zur Entschlüsselung

Über Jahrhunderte hinweg war man der Meinung, dass es keine Alternative zur symmetrischen Kryptografie und dem damit verknüpften Schlüsselverteilungsproblem gäbe.

  • Erst vor wenigen Jahrzehnten wurde die asymmetrische Kryptografie (Public-key cryptography) erfunden.
  • Kennzeichen der asymmetrischen Kryptografie ist, dass zur Kryptografie ein völlig anderer Schlüssel als zur Entschlüsselung benutzt wird.
  • Man unterscheidet hier zwischen dem „öffentlichen Schlüssel“, der zum Verschlüsseln benutzt wird, und dem „privaten Schlüssel“ zum Entschlüsseln des Geheimtextes.
  • Der private Schlüssel wird niemals weitergegeben oder gar veröffentlicht, der öffentliche Schlüssel hingegen wird dem Kommunikationspartner übergeben oder veröffentlicht.
  • Er kann dann von jedermann benutzt werden, um Nachrichten zu verschlüsseln.
  • Um diese jedoch entschlüsseln zu können, benötigt man den dazu passenden privaten Schlüssel.
  • Nur damit kann die verschlüsselte Nachricht wieder entschlüsselt werden.
  • Das heißt, noch nicht einmal der Verschlüssler selbst ist in der Lage, seine eigene Nachricht, die er mit dem öffentlichen Schlüssel der anderen Person verschlüsselt hat, wieder zu entschlüsseln.

Das Verfahren kann übrigens auch „umgekehrt“ verwendet werden, indem eine Person ihren privaten Schlüssel nutzt, um damit eine Information zu verschlüsseln.

  • Nun ist jedermann, der Zugriff auf den öffentlichen Schlüssel hat, in der Lage, damit die Nachricht zu entschlüsseln.
  • Hier geht es meist nicht um die Geheimhaltung einer Nachricht, sondern beispielsweise um die Authentifizierung einer Person beziehungsweise die digitale Signatur einer Nachricht.
  • Jedermann kann leicht überprüfen und erkennen, dass die verschlüsselte Information nur von dieser einen Person stammen kann, denn nur diese besitzt den nötigen privaten Schlüssel.
  • Zum Signieren allein genügt es, den Nachrichtentext unverschlüsselt als Klartext zu belassen, und beispielsweise nur eine Prüfsumme davon verschlüsselt anzuhängen.
  • Wenn der öffentliche Schlüssel des Autors beim Entschlüsseln eine korrekte Prüfsumme freilegt, ist sowohl der Autor als auch die Unverfälschtheit der Nachricht bestätigt.

Da asymmetrische Verfahren algorithmisch aufwendiger sind als symmetrische und daher in der Ausführung langsamer, werden in der Praxis zumeist Kombinationen aus beiden, sogenannte Hybrid-Verfahren genutzt.

  • Dabei wird beispielsweise zuerst ein zufällig generierter individueller Sitzungsschlüssel mithilfe eines asymmetrischen Verfahrens ausgetauscht, und dieser anschließend gemeinsam als Schlüssel für ein symmetrisches Kryptografieverfahren benutzt, wodurch die eigentlich zu kommunizierende Information verschlüsselt wird.

Anwendungen

Nachrichtenübertragung

Eine verschlüsselte Nachricht (z. B. eine E-Mail oder eine Webseite) muss in der Regel über mehrere Stationen übertragen werden.

  • Heute handelt es sich dabei meist um einzelne Computersysteme, das heißt, die verschlüsselte Nachricht wird über ein Rechnernetzwerk übertragen.
  • Man unterscheidet dabei zwei grundlegend unterschiedliche Übertragungsweisen.
  • Bei der Leitungsverschlüsselung wird die Nachricht nur jeweils für den Nachbarrechner verschlüsselt.
  • Dieser entschlüsselt die Nachricht, verschlüsselt sie wiederum (mit einem möglicherweise anderen Verfahren) und schickt sie an seinen Nachbarn – und so weiter bis zum Zielrechner.
  • Der Vorteil dieses Verfahrens besteht darin, dass sich jeweils nur Nachbarrechner auf ein Kryptografieverfahren und verwendete Schlüssel einigen müssen.
  • Darüber hinaus kann diese Übertragungsweise auf einer sehr niedrigen Protokollebene (etwa bereits in der Übertragungs-Hardware) angesiedelt werden.
  • Der Nachteil besteht darin, dass jeder einzelne Rechner auf dem Übertragungsweg vertrauenswürdig und sicher sein muss.
  • Bei der Ende-zu-Ende-Kryptografie hingegen wird die Nachricht vom Absender verschlüsselt und in dieser Form unverändert über mehrere Rechner hinweg zum Empfänger übertragen.
  • Hier hat keiner der übertragenden Rechner Einsicht in den Klartext der Nachricht.
  • Der Nachteil besteht allerdings darin, dass sich der Absender mit jedem möglichen Empfänger auf ein Kryptografieverfahren und zugehörige(n) Schlüssel einigen muss.

Datenträger

Sensible Daten auf einem Datenträger lassen sich im Wesentlichen auf zwei Wegen vor unbefugtem Zugriff schützen
  • man verschlüsselt mit Hilfe von Kryptografiesoftware die gesamte Festplatte oder eine einzelne Partition (Full Disk Encryption, kurz FDE) oder auch nur einen Daten-Container in Form einer einzelnen Datei auf dem Datenträger
  • bei der hardwareseitigen Kryptografie (Hardware encryption) übernimmt ein Mikrochip auf dem USB-Laufwerk eine automatische und transparente Kryptografie.
  • Die Authentifizierung wird beispielsweise dadurch erreicht, dass das Gerät über eine physische Tastatur verfügt, über die vor der Verwendung ein PIN-Code einzugeben ist.

siehe Festplattenverschlüsselung


Kerckhoffs’ Prinzip

Kerckhoffs’ Prinzip - Axiome moderner Kryptografie

Beschreibung

Auguste Kerckhoffs
Grundsätze moderner Kryptografie

1883 von Auguste Kerckhoffs formuliert

  • Kerckhoffs’sche Prinzip
  • Kerckhoffs’ Maxime
Sicherer Kryptografie

Das Kerckhoffs’sche Prinzip ist der zweite der sechs Grundsätze, die Kerckhoffs 1883 in La cryptographie militaire einführt:

Darf nicht der Geheimhaltung bedürfen und ohne Schaden in Feindeshand fallen können
Sicherheit eines Kryptografieverfahrens
MUSS Geheimhaltung des Schlüssels
DARF NICHT Geheimhaltung des Verfahrens
Security through obscurity

Sicherheit durch Verheimlichung

  • Gegenteil von Kerckhoffs’ Prinzip

Sicherheit durch Geheimhaltung des Verfahrens (Kryptografiealgorithmus)

  • zusätzlich zur Geheimhaltung des Schlüssels

Grundsätze

Anforderungen an Verschlüsselungssysteme

Ein System, das diesen Anforderungen entsprach, existierte zu Kerckhoffs’ Zeiten nicht

Nr Verbindlichkeit Beschreibung
1 muss Im Wesentlichen nicht entzifferbar
2 darf keine Geheimhaltung des Verfahrens erfordern
3 muss Leicht zu übermitteln, Schlüssel ohne Aufzeichnung merkbar
4 sollte Mit telegrafischer Kommunikation kompatibel
5 muss Transportabel, Bedienung von nur einer Person
6 muss Einfach anwendbar

Moderne Kryptografie

Kerckhoffs’ Prinzip findet bei den meisten heute verwendeten Kryptografiealgorithmen Anwendung

Gründe

Gründe für das Kerckhoffs’sche Prinzip

Nr Beschreibung
1 Es ist schwieriger, ein Verfahren/Algorithmus geheim zu halten als einen Schlüssel
2 Es ist schwieriger, einen kompromittierten Algorithmus zu ersetzen als einen kompromittierten Schlüssel
3 Geheime Algorithmen können durch Reverse Engineering aus Software- oder Hardware-Implementierungen rekonstruiert werden
4 Fehler in öffentlichen Algorithmen werden leichter entdeckt (vgl. Peer-Review), wenn sich möglichst viele Fachleute damit befassen.
5 Es ist leichter, in „geheimen“ Kryptografieverfahren eine Hintertür zu verstecken

Anwendung

Expertenmeinungen

Konsequente Anwendung des Kerckhoffs’schen Prinzips

  • Führt dazu, dass sich viele Experten eine Meinung über ein Verfahren bilden können
  • Dies ist wünschenswert
  • Durch die Fülle von Expertenmeinungen kann das Verfahren gründlicher auf potenzielle Schwächen und Sicherheitslücken untersucht werden.
Öffentliche Ausschreibung
  • So wurde der Algorithmus AES in einem öffentlichen Ausschreibungsverfahren bestimmt
  • Viele Experten haben Vorschläge für neue und möglichst sicheren Verfahren einreichten und untersuchten
Open Source ist ein wichtiger Teil der Informations- und IT-Sicherheit

Axiome der Kryptoanalyse

Axiome der Kryptoanalyse

Axiom Beschreibung
Algorithmus Angreifen kennen jedes Detail der Kryptografie
Equipment Angreifen ist in Besitz des Ver-/Entschlüsselungs-Hardware Maschine oder Software-Implementierung
Daten Angreifer hat ausreichend plaintext/ciphertext-Paare, die mit dem gleichen Schlüssel erstellt wurden
Strong cipher brute force sollte der beste Angriff sein

Geheime Verfahren

Schlechte Erfahrungen
  • Geheime Verfahren erweisen sich im Nachhinein als unsicher
  • Ein geheimer kryptografischer Algorithmus ist nicht notwendigerweise unsicher
Beispiele
  1. GSM-Algorithmen A5/1 und A5/2
  2. Kryptografische Algorithmen der Zutrittskontrollkarten Mifare Classic und Legic prime
  3. Kryptografieverfahren Magenta


Kryptokonzept

CON.1 Kryptokonzept - Konzepte und Vorgehensweisen

Beschreibung

Einleitung

Kryptografie ist ein Mittel, um die Informationssicherheit in den Schutzzielen Vertraulichkeit, Integrität und Authentizität zu gewährleisten.
  • Mithilfe von kryptografischen Verfahren werden Informationen verschlüsselt, sodass deren Inhalt ohne den zugehörigen Schlüssel nicht lesbar ist.
  • Dabei können symmetrische Verfahren, d.h. es wird derselbe Schlüssel zum Verschlüsseln und Entschlüsseln verwendet, sowie asymmetrische Verfahren, d.h. es wird ein Schlüssel zum Verschlüsseln und ein anderer Schlüssel zum Entschlüsseln verwendet, eingesetzt werden.
In einer heterogenen Umgebung können dabei lokal gespeicherte Daten und auch die zu übertragenden Daten einer Institution wirkungsvoll durch kryptografische Verfahren und Techniken geschützt werden.

Ferner werden weitergehende Maßnahmen auf organisatorischer und prozessualer Ebene benötigt.

  • Der alleinige technische Einsatz von kryptografischen Verfahren genügt nicht, um die Vertraulichkeit, Integrität und Authentizität der verschlüsselten Informationen zu gewährleisten.
Die Gesamtheit der eingesetzten kryptografischen Verfahren und damit verbundenen Maßnahmen wird im Rahmen eines Kryptokonzeptes gebündelt betrachtet.
  • Nur durch eine ganzheitliche Betrachtung der Thematik wird ein effektiver Schutz durch Kryptografie ermöglicht.
Eine Besonderheit stellen Kryptomodule dar, die für kryptografische Verfahren bei erhöhtem Schutzbedarf eingesetzt werden können.
  • Mit einem Kryptomodul ist ein Produkt gemeint, das die im Kryptokonzept dargelegte Sicherheitsfunktion bietet.
  • Ein solches Produkt kann dabei aus Hardware, Software, Firmware oder aus einer Kombination daraus bestehen.
  • Hinzu kommen noch notwendige Bauteile wie Speicher, Prozessoren, Busse und die Stromversorgung, um die Kryptoprozesse umzusetzen.
  • Ein Kryptomodul kann in unterschiedlichen IT- oder Telekommunikationssystemen verwendet werden, um sensible Daten bzw. Informationen zu schützen.

Zielsetzung

Dieser Baustein beschreibt
  • Wie ein Kryptokonzept erstellt werden kann
  • Wie Informationen in Institutionen kryptografisch abgesichert werden können

Abgrenzung und Modellierung

Baustein CON.1 Kryptokonzept ist für den Informationsverbund einmal anzuwenden
  • In diesem Baustein werden allgemeine Anforderungen, organisatorische Rahmenbedingungen und prozessuale Abläufe für kryptografische Produkte und Verfahren behandelt.
  • Die mit dem Betrieb von Kryptomodulen zusammenhängenden Kern-IT-Aufgaben werden hier nicht thematisiert.
  • Dafür müssen die Anforderungen der Bausteine aus der Schicht OPS.1.1 Kern-IT-Betrieb erfüllt werden.
Wie auf Anwendungsebene (z. B. Verschlüsselung oder Hashen von Passwörtern in einer Datenbank), einzelne IT-Systeme (z. B. Laptops) oder Kommunikationsverbindungen kryptografisch abgesichert werden können, ist ebenfalls nicht Gegenstand dieses Bausteins.
  • Diese Themen werden in den entsprechenden Bausteinen der Schichten APP Anwendungen, SYS IT-Systeme und NET Netze und Kommunikation behandelt.

Gefährdungslage

Gefährdung Beschreibung
Unzureichendes Schlüsselmanagement
bei Verschlüsselung
Durch ein unzureichendes Schlüsselmanagement könnten Angreifer auf verschlüsselte Daten zugreifen.
  • So kann es etwa sein, dass sich aufgrund fehlender Regelungen verschlüsselte Informationen mitsamt den dazugehörigen Schlüsseln auf demselben Datenträger befinden oder über denselben Kommunikationskanal (unverschlüsselt) übertragen werden.
  • Dadurch kann bei symmetrischen Verfahren jeder, der auf den Datenträger oder den Kommunikationskanal zugreifen kann, die Informationen entschlüsseln, wenn das eingesetzte Verschlüsselungsverfahren bekannt ist.
Verstoß gegen rechtliche Rahmenbedingungen
beim Einsatz von kryptografischen Verfahren
Wenn Institutionen kryptografische Verfahren und Produkte einsetzen, müssen sie dabei diverse gesetzliche Rahmenbedingungen beachten.
  • In einigen Ländern dürfen etwa kryptografische Verfahren nicht ohne staatliche Genehmigung eingesetzt werden.
  • Das kann dazu führen, dass Empfänger im Ausland verschlüsselte Datensätze nicht lesen können, da sie die benötigten kryptografischen Produkte nicht einsetzen dürfen und sich dabei vielleicht sogar strafbar machen.

Außerdem ist in vielen Ländern auch der Einsatz von Produkten mit starker Kryptografie erheblich eingeschränkt.

  • Das kann dazu verleiten, schützenswerte Daten unverschlüsselt zu lassen oder mit unsicheren Verfahren zu schützen.
  • Dadurch sind einerseits leicht Angriffe möglich, andererseits kann auch gegen nationales Recht verstoßen werden.
  • So können etwa Datenschutzgesetze vorschreiben, dass adäquate kryptografische Verfahren eingesetzt werden müssen, um personenbezogene Daten zu schützen.
Vertraulichkeits- oder Integritätsverlust
von Daten durch Fehlverhalten
Setzt eine Institution beispielsweise Kryptomodule ein, die zu kompliziert zu bedienen sind, könnten die Benutzer aus Bequemlichkeit oder aus pragmatischen Gründen darauf verzichten und stattdessen die Informationen im Klartext übertragen.
  • Dadurch können die übertragenen Informationen von Angreifern abgehört werden.

Auch kann eine Fehlbedienung von Kryptomodulen dazu führen, dass vertrauliche Informationen von Angreifern abgegriffen werden, etwa wenn diese im Klartext übertragen werden, weil versehentlich der Klartext-Modus aktiviert wurde.

Software-Schwachstellen oder -Fehler
in Kryptomodulen
Software-Schwachstellen oder -Fehler in Kryptomodulen beeinträchtigen die Sicherheit der eingesetzten kryptografischen Verfahren.
  • Sie können etwa dazu führen, dass die damit geschützten Informationen mitgelesen werden.
  • Darüber hinaus ist es möglich, dass Angreifer die Kryptomodule manipulieren, z. B. über Schadsoftware.
  • So können institutionskritische Daten abfließen oder auch ganze Produktionsprozesse stillstehen, weil sich Daten nicht mehr entschlüsseln lassen.
Ausfall eines Kryptomoduls Kryptomodule können durch technische Defekte, Stromausfälle oder absichtliche Zerstörung ausfallen.

Dadurch könnten bereits verschlüsselte Daten nicht mehr entschlüsselt werden, solange das erforderliche Kryptomodul nicht mehr verfügbar ist.

  • So können ganze Prozessketten stillstehen, z. B. wenn weitere IT-Anwendungen auf die Daten angewiesen sind.
Unsichere kryptografische Algorithmen
oder Produkte
Unsichere oder veraltete kryptografische Algorithmen lassen sich von einem Angreifer mit vertretbaren Ressourcen brechen.
  • Bei Verschlüsselungsalgorithmen bedeutet dies, dass es ihm gelingt, aus dem verschlüsselten Text den ursprünglichen Klartext zu ermitteln, ohne dass er zusätzliche Informationen hat, wie z. B. den verwendeten kryptografischen Schlüssel.
  • Werden unsichere kryptografische Algorithmen eingesetzt, können Angreifer den kryptografischen Schutz unterlaufen und somit auf schützenswerte Informationen der Institution zugreifen.
  • Selbst, wenn in einer Institution ausschließlich sichere (z. B. zertifizierte) Produkte eingesetzt werden, kann die Kommunikation trotzdem unsicher werden.
  • Das ist etwa dann der Fall, wenn der Kommunikationspartner kryptografische Verfahren benutzt, die nicht dem Stand der Technik entsprechen.
Fehler in verschlüsselten Daten
oder kryptografischen Schlüsseln
Werden Informationen verschlüsselt und die Chiffrate im Anschluss verändert, lassen sich die verschlüsselten Informationen eventuell nicht mehr korrekt entschlüsseln.
  • Je nach Betriebsart der Verschlüsselungsroutinen kann dies bedeuten, dass nur wenige Bytes oder auch sämtliche Daten falsch entschlüsselt werden.
  • Ist keine Datensicherung vorhanden, sind solche Daten verloren.

Noch kritischer kann sich ein Fehler in den verwendeten kryptografischen Schlüsseln auswirken.

  • Schon die Änderung eines einzigen Bits eines kryptografischen Schlüssels führt dazu, dass sämtliche damit verschlüsselten Daten nicht mehr entschlüsselt werden können.
Unautorisierte Nutzung eines Kryptomoduls Gelingt es einem Angreifer, ein Kryptomodul unautorisiert zu benutzen, kann er kritische Sicherheitsparameter manipulieren.
  • Somit bieten die kryptografischen Verfahren keine ausreichende Sicherheit mehr.
  • Weiterhin kann ein Angreifer das Kryptomodul so manipulieren, dass es zwar auf den ersten Blick korrekt arbeitet, sich jedoch tatsächlich in einem unsicheren Zustand befindet.
  • Dadurch bleibt der Angreifer längere Zeit unentdeckt und kann auf zahlreiche institutionskritische Informationen zugreifen.
Kompromittierung kryptografischer Schlüssel Die Sicherheit kryptografischer Verfahren hängt entscheidend davon ab, wie vertraulich die verwendeten kryptografischen Schlüssel bleiben.
  • Daher wird ein potenzieller Angreifer in der Regel versuchen, die verwendeten Schlüssel zu ermitteln.
  • Das könnte ihm z. B. gelingen, indem er flüchtige Speicher ausliest oder ungeschützte Schlüssel findet, die beispielsweise in einer Datensicherung hinterlegt sind.
  • Kennt er den verwendeten Schlüssel und das eingesetzte Kryptoverfahren, kann er die Daten relativ leicht entschlüsseln.
Gefälschte Zertifikate Zertifikate dienen dazu, einen öffentlichen kryptografischen Schlüssel an eine Person, ein IT-System oder eine Institution zu binden.
  • Diese Bindung des Schlüssels wird wiederum kryptografisch mittels einer digitalen Signatur häufig von einer vertrauenswürdigen dritten Stelle abgesichert.

Diese Zertifikate werden dann von Dritten benutzt, um digitale Signaturen der im Zertifikat ausgewiesenen Person, des IT-Systems oder der Institution zu prüfen.

  • Alternativ kann der im Zertifikat hinterlegte Schlüssel für ein asymmetrisches Verschlüsselungsverfahren benutzt werden, um die Kommunikation mit dem Zertifikatsinhaber zu verschlüsseln.

Ist ein solches Zertifikat gefälscht, dann werden digitale Signaturen fälschlicherweise als korrekt geprüft und der Person, dem IT-System oder der Institution im Zertifikat zugeordnet.

  • Oder es werden Daten mit einem möglicherweise unsicheren Schlüssel verschlüsselt und versandt.

Anforderungen

Zuständigkeiten

Grundsätzlich ist der Informationssicherheitsbeauftragte (ISB) dafür zuständig, dass alle Anforderungen gemäß dem festgelegten Sicherheitskonzept erfüllt und überprüft werden.
  • Zusätzlich kann es noch andere Rollen geben, die weitere Zuständigkeiten bei der Umsetzung von Anforderungen haben.
  • Diese sind dann jeweils explizit in eckigen Klammern in der Überschrift der jeweiligen Anforderungen aufgeführt.
Grundsätzlich zuständig
  • Informationssicherheitsbeauftragter (ISB)
Weitere Zuständigkeiten
  • Fachverantwortliche
  • IT-Betrieb
  • Vorgesetzte

Basis-Anforderungen

Basis-Anforderungen MÜSSEN vorrangig erfüllt werden
Anforderung Beschreibung
A1 Auswahl geeigneter kryptografischer Verfahren
A2 Datensicherung bei Einsatz kryptografischer Verfahren

A1 Auswahl geeigneter kryptografischer Verfahren [Fachverantwortliche] (B)

Es MÜSSEN geeignete kryptografische Verfahren ausgewählt werden.
  • Dabei MUSS sichergestellt sein, dass etablierte Algorithmen verwendet werden, die von der Fachwelt intensiv untersucht wurden und von denen keine Sicherheitslücken bekannt sind.
  • Ebenso MÜSSEN aktuell empfohlene Schlüssellängen verwendet werden.

A2 Datensicherung bei Einsatz kryptografischer Verfahren [IT-Betrieb] (B)

In Datensicherungen MÜSSEN kryptografische Schlüssel vom IT-Betrieb derart gespeichert bzw. aufbewahrt werden, dass Unbefugte nicht darauf zugreifen können.
  • Langlebige kryptografische Schlüssel MÜSSEN außerhalb der eingesetzten IT-Systeme aufbewahrt werden.
Bei einer Langzeitspeicherung verschlüsselter Daten SOLLTE regelmäßig geprüft werden, ob die verwendeten kryptografischen Algorithmen und die Schlüssellängen noch dem Stand der Technik entsprechen.
  • Der IT-Betrieb MUSS sicherstellen, dass auf verschlüsselt gespeicherte Daten auch nach längeren Zeiträumen noch zugegriffen werden kann.
  • Verwendete Kryptoprodukte SOLLTEN archiviert werden.
  • Die Konfigurationsdaten von Kryptoprodukten SOLLTEN gesichert werden.

Standard-Anforderungen

Gemeinsam mit den Basis-Anforderungen entsprechen die folgenden Anforderungen dem Stand der Technik für den Baustein CON.1 Kryptokonzept.

  • Sie SOLLTEN grundsätzlich erfüllt werden.
Basis-Anforderungen MÜSSEN vorrangig erfüllt werden
Anforderung Beschreibung
A03 Verschlüsselung der Kommunikationsverbindungen
A04 Geeignetes Schlüsselmanagement
A05 Sicheres Löschen und Vernichten von kryptografischen Schlüsseln IT-Betrieb
A06 Bedarfserhebung für kryptografische Verfahren und Produkte IT-Betrieb, Fachverantwortliche

A3 Verschlüsselung der Kommunikationsverbindungen

Es SOLLTE geprüft werden, ob mit vertretbarem Aufwand eine Verschlüsselung der Kommunikationsverbindungen möglich und praktikabel ist.
  • Ist dies der Fall, SOLLTEN Kommunikationsverbindungen geeignet verschlüsselt werden.

A4 Geeignetes Schlüsselmanagement

Kryptografische Schlüssel SOLLTEN immer mit geeigneten Schlüsselgeneratoren und in einer sicheren Umgebung erzeugt werden.
  • Ein Schlüssel SOLLTE möglichst nur einem Einsatzzweck dienen.
Insbesondere SOLLTEN für die Verschlüsselung und Signaturbildung unterschiedliche Schlüssel benutzt werden.
  • Der Austausch von kyptografischen Schlüsseln SOLLTE mit einem als sicher geltenden Verfahren durchgeführt werden.
Wenn Schlüssel verwendet werden, SOLLTE die authentische Herkunft und die Integrität der Schlüsseldaten überprüft werden.
Alle kryptografischen Schlüssel SOLLTEN hinreichend häufig gewechselt werden.
  • Es SOLLTE eine festgelegte Vorgehensweise für den Fall geben, dass ein Schlüssel offengelegt wurde.
  • Alle erzeugten kryptografischen Schlüssel SOLLTEN sicher aufbewahrt und verwaltet werden.

A5 Sicheres Löschen und Vernichten von kryptografischen Schlüsseln [IT-Betrieb]

Nicht mehr benötigte Schlüssel und Zertifikate SOLLTEN sicher gelöscht bzw. vernichtet werden.

A6 Bedarfserhebung für kryptografische Verfahren und Produkte [IT-Betrieb, Fachverantwortliche]

Es SOLLTE festgelegt werden, für welche Geschäftsprozesse oder Fachverfahren kryptografische Verfahren eingesetzt werden sollen.

  • Danach SOLLTEN die Anwendungen, IT-Systeme und Kommunikationsverbindungen identifiziert werden, die notwendig sind, um die Aufgaben zu erfüllen.

Diese SOLLTEN durch den IT-Betrieb geeignet kryptografisch abgesichert werden.

Anforderungen bei erhöhtem Schutzbedarf

Exemplarische Vorschläge
  • Anforderungen, die über das dem Stand der Technik entsprechende Schutzniveau hinausgehen
  • SOLLTEN bei ERHÖHTEM SCHUTZBEDARF in Betracht gezogen werden
  • Die konkrete Festlegung erfolgt im Rahmen einer Risikoanalyse
Anforderung Beschreibung Zuständigkeit
A07 Erstellung einer Sicherheitsrichtlinie für den Einsatz kryptografischer Verfahren und Produkte
A08 Erhebung der Einflussfaktoren für kryptografische Verfahren und Produkte
A09 Auswahl eines geeigneten kryptografischen Produkts IT-Betrieb, Fachverantwortliche
A10 A10 Entwicklung eines Kryptokonzepts
A11
A12
A13
A14
A15
A16
A17
A18

A7 Erstellung einer Sicherheitsrichtlinie für den Einsatz kryptografischer Verfahren und Produkte (H)

Ausgehend von der allgemeinen Sicherheitsrichtlinie der Institution SOLLTE eine spezifische Richtlinie für den Einsatz von Kryptoprodukten erstellt werden.
  • In der Sicherheitsrichtlinie SOLLTE geregelt werden, wer für den sicheren Betrieb der kryptografischen Produkte zuständig ist.
  • Für die benutzten Kryptoprodukte SOLLTE es Vertretungsregelungen geben.
Auch SOLLTEN notwendige Schulungs- und Sensibilisierungsmaßnahmen für Benutzer sowie Verhaltensregeln und Meldewege bei Problemen oder Sicherheitsvorfällen festgelegt werden.
  • Weiter SOLLTE die Richtlinie definieren, wie sichergestellt wird, dass Kryptomodule sicher konfiguriert, korrekt eingesetzt und regelmäßig gewartet werden.
Die Richtlinie SOLLTE allen relevanten Mitarbeitern bekannt und grundlegend für ihre Arbeit sein.

Wird die Richtlinie verändert oder wird von ihr abgewichen, SOLLTE dies mit dem ISB abgestimmt und dokumentiert werden.

  • Es SOLLTE regelmäßig überprüft werden, ob die Richtlinie noch korrekt umgesetzt wird.
  • Die Ergebnisse SOLLTEN sinnvoll dokumentiert werden.

A8 Erhebung der Einflussfaktoren für kryptografische Verfahren und Produkte (H)

Bevor entschieden werden kann, welche kryptografischen Verfahren und Produkte bei erhöhtem Schutzbedarf eingesetzt werden, SOLLTEN unter anderem folgende Einflussfaktoren ermittelt werden
  • Sicherheitsaspekte (siehe ==== A6 Bedarfserhebung für kryptografische Verfahren und Produkte), ====
  • technische Aspekte,
  • personelle und organisatorische Aspekte,
  • wirtschaftliche Aspekte,
  • Lebensdauer von kryptografischen Verfahren und der eingesetzten Schlüssellängen,
  • Zulassung von kryptografischen Produkten sowie
  • gesetzliche Rahmenbedingungen.

A9 Auswahl eines geeigneten kryptografischen Produkts [IT-Betrieb, Fachverantwortliche] (H)

Bevor ein kryptografisches Produkt ausgewählt wird, SOLLTE die Institution festlegen, welche Anforderungen das Produkt erfüllen muss.
  • Dabei SOLLTEN Aspekte wie Funktionsumfang, Interoperabilität, Wirtschaftlichkeit sowie Fehlbedienungs- und Fehlfunktionssicherheit betrachtet werden.
  • Es SOLLTE geprüft werden, ob zertifizierte Produkte vorrangig eingesetzt werden sollen.
  • Auch die zukünftigen Einsatzorte SOLLTEN bei der Auswahl beachtet werden, da es z. B. Export- und Importbeschränkungen für kryptografische Produkte gibt.
Auf Produkte mit unkontrollierbarer Schlüsselablage SOLLTE generell verzichtet werden.

A10 Entwicklung eines Kryptokonzepts

Es SOLLTE ein Kryptokonzept entwickelt werden, das in das Sicherheitskonzept der Institution integriert wird.
  • Im Konzept SOLLTEN alle technischen und organisatorischen Vorgaben für die eingesetzten kryptografischen Produkte beschrieben werden.
  • Auch SOLLTEN alle relevanten Anwendungen, IT-Systeme und Kommunikationsverbindungen aufgeführt sein.
  • Das erstellte Kryptokonzept SOLLTE regelmäßig aktualisiert werden.

A11 Sichere Konfiguration der Kryptomodule [IT-Betrieb] (H)

Kryptomodule SOLLTEN sicher installiert und konfiguriert werden.

  • Alle voreingestellten Schlüssel SOLLTEN geändert werden.
  • Anschließend SOLLTE getestet werden, ob die Kryptomodule korrekt funktionieren und vom Benutzer auch bedient werden können.

Weiterhin SOLLTEN die Anforderungen an die Einsatzumgebung festgelegt werden.

  • Wenn ein ITSystem geändert wird, SOLLTE getestet werden, ob die eingesetzten kryptografischen Verfahren noch greifen.
  • Die Konfiguration der Kryptomodule SOLLTE dokumentiert und regelmäßig überprüft werden.

A12 Sichere Rollenteilung beim Einsatz von Kryptomodulen [IT-Betrieb] (H)

Bei der Konfiguration eines Kryptomoduls SOLLTEN Benutzerrollen festgelegt werden.

  • Es SOLLTE mit Zugriffskontroll- und Authentisierungsmechanismen verifiziert werden, ob ein Mitarbeiter den gewünschten Dienst auch tatsächlich benutzen darf.
  • Das Kryptomodul SOLLTE so konfiguriert sein, dass bei jedem Rollenwechsel oder bei Inaktivität nach einer bestimmten Zeitdauer die Authentisierungsinformationen erneut eingegeben werden müssen.

A13 Anforderungen an die Betriebssystem-Sicherheit beim Einsatz von Kryptomodulen (H)

Das Zusammenwirken von Betriebssystem und Kryptomodulen SOLLTE gewährleisten, dass • die installierten Kryptomodule nicht unbemerkt abgeschaltet oder umgangen werden können, • die angewandten oder gespeicherten Schlüssel nicht kompromittiert werden können, • die zu schützenden Daten nur mit Wissen und unter Kontrolle des Benutzers auch unverschlüsselt auf Datenträgern abgespeichert werden bzw. das informationsverarbeitende System verlassen können sowie • Manipulationsversuche am Kryptomodul erkannt werden.

A14 Schulung von Benutzern und Administratoren [Vorgesetzte,Fachverantwortliche, IT-Betrieb] (H)

Es SOLLTE Schulungen geben, in denen Benutzern und Administratoren der Umgang mit den für sie relevanten Kryptomodulen vermittelt wird.

  • Den Benutzern SOLLTE genau erläutert werden, was die spezifischen Sicherheitseinstellungen von Kryptomodulen bedeuten und warum sie wichtig sind.

Außerdem SOLLTEN sie auf die Gefahren hingewiesen werden, die drohen, wenn diese Sicherheitseinstellungen aus Bequemlichkeit umgangen oder deaktiviert werden.

  • Die Schulungsinhalte SOLLTEN immer den jeweiligen Einsatzszenarien entsprechend angepasst werden.

Die Administratoren SOLLTEN zudem gezielt dazu geschult werden, wie die Kryptomodule zu administrieren sind.

  • Auch SOLLTEN sie einen Überblick über kryptografische Grundbegriffe erhalten.

A15 Reaktion auf praktische Schwächung eines Kryptoverfahrens (H)

Es SOLLTE ein Prozess etabliert werden, der im Falle eines geschwächten kryptografischen Verfahrens herangezogen werden kann.

  • Dabei SOLLTE sichergestellt werden, dass das geschwächte kryptografische Verfahren abgesichert werden kann oder durch eine geeignete Alternative abgelöst wird.

A16 Physische Absicherung von Kryptomodulen [IT-Betrieb] (H)

Der IT-Betrieb SOLLTE sicherstellen, dass nicht unautorisiert physisch auf Modulinhalte des Kryptomoduls zugegriffen wird.

  • Hard- und Softwareprodukte, die als Kryptomodule eingesetzt werden, SOLLTEN einen Selbsttest durchführen können.

A17 Abstrahlsicherheit [IT-Betrieb] (H)

Es SOLLTE untersucht werden, ob zusätzliche Maßnahmen hinsichtlich der Abstrahlsicherheit notwendig sind.

  • Dies SOLLTE insbesondere dann geschehen, wenn staatliche Verschlusssachen (VS) der Geheimhaltungsgrade VS-VERTRAULICH und höher verarbeitet werden.

A18 Kryptografische Ersatzmodule [IT-Betrieb] (H)

Es SOLLTEN Ersatzkryptomodule vorrätig sein.