Maximum Transmission Unit
MTU (Maximum Transmission Unit) beschreibt die maximale Paketgröße eines Protokolls der Vermittlungsschicht (Schicht 3) des OSI-Modells in Byte, die ohne Zerlegung in den Rahmen (engl. „Frame“) eines Netzes der Sicherungsschicht (Schicht 2) passt.
- Das Paket passt in die Nutzlast (Payload) des Protokolls der Sicherungsschicht
- Die maximale Größe der Nutzlast der Sicherungsschicht wird auch oft als MTU der Sicherungsschicht (engl. 'link MTU') bezeichnet
Berechnung der maximalen Größe eines Rahmens der Sicherungsschicht
Maximale Rahmengröße = Größte MTU aller benutzten Protokolle der Vermittlungsschicht + Größe der Sicherungsschichtheader
Typische MTU-Größen
Medium | MTU in Bytes |
---|---|
Hyperchannel | 65535 |
Token Ring (4)(802.5) | 4464 |
Token Ring (16) | 17914 |
FDDI | 4352 |
Ethernet | 1500 |
Gigabit Ethernet mit Jumboframes | 9000 |
PPPoE (z. B. DSL) | ≤ 1492 |
SLIP / Point-to-Point Protocol|PPP (low delay) | 296 |
X.25 | 576 |
FibreChannel | theoretisch unbegrenzt |
ISDN | 576 |
DQDB | |
HIPPI | |
ATM | 4500, s. u. |
ARCNET | |
802.11 | 2312 (WiFi) |
Falsche MTU-Größe
Probleme durch falsche MTU-Größe können sehr subtil sein
- Es ist möglich einem Webserver zu erreichen, die Dateiübertragung schlägt jedoch fehl
- Verbindung zu einem Chat-Server funktioniert, aber die Informationen darüber, wer online ist, sind unvollständig
Analyse
Ermittlung der MTU-Größe
- Zu diesem Zweck können Sie 'ping' verwenden, um ein Paket der erforderlichen Größe mit gesetztem Bit "Nicht fragmentieren" zu senden
- Es ist auch eine gute Idee, eine Paketanzahl von eins zu verwenden, da es nicht sinnvoll ist, mehr Netzwerkverkehr zu senden als Sie brauchen
Hinweis
Die beim Befehl ping angegebene Größe entspricht der Anzahl der zu sendenden Datenbytes. Diese muss also 28 Byte kleiner sein als die tatsächliche Paketgröße, um die Größe des Paket-Headers zu berücksichtigen.
Beispiel Ethernet
- Ein Ethernet Frame besteht aus zwei Teilen: dem „Header“, in dem Quell- und Zieladressen und andere wichtige Parameter für den Versand kodiert sind, und der Nutzlast, deren Größe durch die MTU bestimmt ist.
- In diesem Versuch ist die Größe der MTU mit 1500 Byte vorgegeben. Mit Hilfe des ping-Programmes wird ein „Frame“ erzeugt, der dann im Netzwerk über das Ethernet-Protokoll versendet wird.
- Die Verwendung des Begriffes Nutzlast ist hier mehrdeutig, da im OSI-Modell die verschiedenen Protokolle ineinander eingepackt (gekapselt) werden.
- Der im Versuch verwendete Linux-Befehl ping -s 1472 10.0.0.1 (Windows-Befehl ping -l 1472 10.0.0.1) sendet dann ein Internet Control Message Protocol|ICM-Paket mit der Nutzlast von 1472 Bytes an die IP-Adresse 10.0.0.1.
ping -f -l 1472 10.0.0.1 1472 bytes Nutzlast des ICMP-Protokolles (Transportschicht) + 8 bytes ICMP-Header (Transportschicht) + 20 bytes IPv4-Header (der Vermittlungsschicht) ------------- = 1500 bytes (Nutzlast von Ethernet) + 14 bytes (Header der Sicherungsschicht) + 4 bytes (Frame Check Sequence) ------------- = 1518 bytes (kompletter Ethernet Frame)
- Mit einem Sniffer wie z. B. Wireshark wird als Ethernet Header nur die Größe von 14 Byte angezeigt.
- Hierzu kommt noch die 4 Byte große Frame Check Sequence am Ende des Frames.
- Falls Virtual Local Area Network|VLANs verwendet werden, besteht der Header der Sicherungsschicht aus 18 Byte und der gesamte Ethernet Frame kann eine Größe von bis zu 1522 Byte annehmen.
- Würde IPv6 verwendet, änderte sich obige Berechnung dahingehend, dass der IPv6-Header der Vermittlungsschicht 40 statt 20 Byte beträgt und damit statt 1472 Byte ICMP-Nutzlast nur 1452 Byte möglich wären.
Oft ist es hilfreich dem ping-Programm vorzugeben das „don’t fragment (DF) bit“ für die Testpakete im IPv4-Header zu setzen denn dann erhält man eine Nachricht, falls die MTU überschritten wird.
- Linux: ping -M do -s 1472 10.0.0.1
- Windows: ping -l 1472 -f 10.0.0.1 )
Leicht sichtbar machen lässt sich die Path MTU mit dem Programm tracepath für IPv4 bzw. tracepath6 für IPv6.