RAM
Einfach erklärt: Was ist RAM?
- Die Abkürzung RAM steht für Random-Access Memory und ist auf deutsch besser bekannt als Arbeitsspeicher.
- Der Arbeitsspeicher ist ein kurzzeitiger Speicher, in dem das Betriebssystem alle laufenden Prozesse und Programme zwischenspeichert.
- Lesen Sie diesen Artikel gerade im Browser, belegt Ihr Browser ebenfalls etwas Arbeitsspeicher.
- Seit einigen Jahren wird der klassische DDR3-RAM durch DDR4-RAM ersetzt. DDR4 bringt einige Vorteile mit sich.
Geschichte
- Die Entstehung des Begriffs geht in die Anfangszeit der modernen Computer zurück, bei denen alle Daten auf sequentiell zu lesenden Speicherformen wie Lochkarte oder Magnetbändern vorlagen, die zur Verarbeitung in schnelle Register Prozessor Rechenregister geladen wurden.
- Um Zwischenergebnisse schneller bereitzuhalten, wurden zeitweise Verzögerungsleitung für Zwischenwerte eingesetzt, bis dann die Ferritkernspeicher eingeführt wurden.
- Diese beschreibbaren Speicher hatten schon die gleiche Form des Matrixzugriffes wie heutige RAMs.
- Zu jener Zeit waren die schnellen Speichertypen alle beschreibbar und die wesentliche Neuerung bestand im wahlfreien Zugriff der magnetischen Kernspeicher und der nachfolgend auf Halbleiterspeichern aufsetzenden RAM-Bausteine.
Arten von RAM
- Random-Access Memory (RAM)
- flüchtiges (volatiles) RAM
- Static random-access memory (SRAM)
- Dynamic Random Access Memory (DRAM)
- Synchronous Dynamic RAM (SDRAM, DDR-SDRAM usw.)
- Pseudostatisches RAM (PSRAM)
- Nichtflüchtiges RAM (NVRAM)
- Ferroelectric Random Access Memory (FRAM, FeRAM)
- MRAM|Magnetisches RAM (MRAM),
- Phase-change Random Access Memory|Phasenwechsel-RAM (PRAM, PCRAM)
- Resistives RAM (RRAM, ReRAM)
Technische Umsetzungen
- Die heute gängigsten werden hauptsächlich in Computern eingesetzt und sind „flüchtig“ (volatil), d.h., die gespeicherten Daten
gehen nach Abschaltung der Stromzufuhr verloren.
- Es gibt allerdings RAM-Typen, die ihre Information auch ohne Stromzufuhr erhalten (nicht volatil).
- Diese werden NVRAM genannt. Die folgende Auflistung ist nach dem grundlegenden Funktionsprinzip geordnet:
PCRAM, PRAM
- PRAM befindet sich noch in der Entwicklung.
- Er soll als Ersatz von S- und DRAM dienen und Vorteile gegenüber RAM-Speichern haben, zum Beispiel
sollen Schreibzugriffe wesentlich schneller sein und die Anzahl der Schreib-/Lese-Zyklen soll um ein Vielfaches höher sein als NOR-Flash-Speicher
- Dabei belegt er weniger Fläche und ist einfacher in der Herstellung.
nichtflüchtiges RAM (NVRAM)
- NVRAM ist ein nichtflüchtiger Datenspeicher der auf RAM basiert und dessen Dateninhalt ohne externe Energieversorgung erhalten bleibt.
Synchroner dynamischer RAM (SDRAM)
- SDRAM ist der mit am häufigsten genutzte Arbeitsspeicher bzw. Hauptspeicher in Computersystemen.
- Zudem hat SDRAM die Eigenschaft, dass er seine Schreib- und Lesezugriffe am Systemtakt orientiert.
- Das bedeutet, er arbeitet synchron mit dem Speicherbus.
- Die synchrone Arbeitsweise vereinfacht und beschleunigt die Ansteuerung des Speichers.
- SDRAM kann programmiert und so die Art des Zugriffs gesteuert werden.
- Auf die Weise lässt sich SDRAM an jede Anwendung anpassen.
Pseudostatisches RAM (PSRAM)
- Der Pseudostatische RAM ist ein flüchtiger RAM.
- Ein PSRAM besteht aus einem DRAM mit eingebauter Steuerschaltung für das nötige Auffrischen der Speicherzellen und einer Schaltung zur Umsetzung der SRAM-Schnittstelle auf eine DRAM-Schnittstelle.
- PSRAM kombiniert die Vorteile des geringen Flächenbedarfs des DRAMs mit der relativ einfachen Ansteuerung eines SRAMs.
Ferroelectric RAM (FRAM, FeRAM)
- Der Speicher- und Löschvorgang des FRAMs wird durch eine Polarisationsänderung in einer ferroelektrischen Schicht realisiert. Eine form von FRAM ist PFRAM (Polymer Ferroelectric RAM), das eine dünne Schicht aus ferro elektrischem Polymer zwischen zwei Metalllegierungen polarisiert.
- Benötigt keine Stromversorgung für den Datenerhalt
- Kompatibel zu den EEPROMs
- 10 Billiarden Schreib/-Lese-Zyklen
- Schreibzeit ca. 100 ns
Dynamisches RAM (DRAM)
- DRAM Speicherzellen werden aus einem Transistor und einem Kondensator aufgebaut
- DRAMs haben eine höhere Integrationsdichte als SRAMs und erlauben daher größere Speicher auf gleicher Chipfläche.
- DRAM Speicher muss in regelmäßigen Abständen (ms) aufgefrischt werden, da die Kondensatoren sich ständig entladen
- DRAMs sind mit Lese- und Schreibzeiten im Bereich von 10-100 ns deutlich langsamer als SRAMs
- DRAM Speicher ist wegen der hohen Integrationsdichte und des einfacheren Aufbaus wesentlich billiger als SRAM Speicher
- DRAM Speicher werden vorwiegend als Standardspeicherbausteine wie z.B. als Hauptspeicher eingesetzt
- DRAM
Statisches RAM (SRAM)
- Statisches RAM (SRAM) bezeichnet meist kleinere elektronische Speicherbausteine im Bereich bis zu einigen MiBit.
- Als Besonderheit behalten sie ihren Speicherinhalt, welcher in ihnen gespeichert wird, ohne laufende Auffrischungszyklen.
- Es genügt das Anliegen einer Versorgungsspannung.
- Von diesem Umstand leitet sich auch die Bezeichnung ab, da es selbst spannungslos über Jahre seinen Zustand nicht ändert.
- SRAM benötigt deutlich mehr Bauelemente (und Chipfläche) als DRAM
- Konkret sechs bis acht Transistoren je Speicherbit. gegenüber einem (plus einem Speicherkondensator) in einer DRAM-Zelle.
- Ist daher für große Speichermengen zu teuer.
- Es bietet jedoch sehr kurze Zugriffszeiten und benötigt keine Refresh-Zyklen wie bei DRAM.
- Anwendungen liegen beispielsweise im Computer als Cache und bei Mikrocontrollern als Arbeitsspeicher vor.
- Sein Inhalt ist flüchtig, d.h. die gespeicherte Information geht bei Abschaltung der Betriebsspannung verloren.
- In Kombination mit einer Pufferbatterie kann aus dem statischen RAM eine spezielle Form von nicht flüchtigem Speicher NVRAM realisiert werden.
- SRAM-Zellen ohne Zugriffzyklen haben nur einen sehr geringen Leistungsbedarf und die Pufferbatterie kann über mehrere Jahre den Dateninhalt im SRAM halten.
- SRAM
.
Charakteristik
- Die Bezeichnung des Speichertyps als „wahlfrei“ bedeutet in diesem Zusammenhang, dass jede Speicherzelle über ihre Speicheradresse direkt angesprochen werden kann.
- Der Speicher muss also nicht sequenziell oder in Blöcken ausgelesen werden.
- Bei großen Speicherbausteinen erfolgt die Adressierung jedoch nicht über die einzelnen Zellen, sondern über ein Wort, dessen Breite von der Speicherarchitektur abhängt.
- Das unterscheidet das RAM von blockweise zu beschreibenden Speichern, den sogenannten Flash-Speichern.
- Es gibt weitere Speicherarten mit wahlfreiem Zugriff, insbesondere Nur-Lese-Speicherbausteine, sog. ROMs .
- Da die Bezeichnung RAM missverständlich ist, wurde zeitweise versucht, den Namen memory (RWM, Lese-Schreib-Speicher) zu etablieren, der sich jedoch nicht durchsetzen konnte.
Ansteuerung von RAM-Chips
- Je nach Typ von RAM-Baustein erfolgt die Ansteuerung synchron zu einem Taktsignal oder asynchron ohne Takt.
- Der wesentliche Unterschied besteht darin, dass bei der asynchronen Variante die Daten erst nach einer bestimmten, bausteinabhängigen Laufzeit zur Verfügung stehen bzw. geschrieben sind.
- Diese, unter anderem materialabhängigen, zeitlichen Parameter weisen Exemplarstreuungen auf und sind von verschiedenen Einflüssen abhängig, weshalb bei asynchronen Speichern der maximale Durchsatz stärker limitiert ist als bei synchronen Speicheransteuerungen.
- Bei synchronen Speichern wird die zeitliche Ausrichtung der Steuersignale durch ein Taktsignal festgelegt, wodurch sich deutlich höhere Durchsatzraten ergeben.
- Synchrone RAMs können sowohl statische als auch dynamische RAMs sein (siehe unten).
- Beispiele für synchrone SRAMs sind Burst-SRAMs oder ZBTRAMs.
- Bei den dynamischen RAMs sind die seit Ende der 1990er Jahre üblichen synchronen SDR-SDRAM und deren Nachfolger, die DDR-SDRAMs als Beispiel zu nennen, während die
- Davor übliche stellen DRAMs wie Extended Data Output Random Access Memory (EDO-DRAMs) asynchrone DRAM-Bausteine dar.
- Ein RAM-Chip weist mindestens eine bidirektionale (nämlich durch den R/W-Pin gesteuerte) Datenleitung auf.
- Oft findet man auch 4, 8 oder 16 Datenpins, je nach Auslegung.
- Die Kapazität eines Chips in Bits ergibt sich dann durch die Datenbusbreite mal der Anzahl der möglichen Adresswerte .
Versorgungsspannung
Die Versorgungsspannung von SDRAMs zeigt folgende Tabelle:
Typ | Spannung (V) |
---|---|
SDRAM | 3,3 |
DDR-SDRAM | 2,5 |
DDR2-SDRAM | 1,8 |
DDR3-SDRAM | 1,5 |
DDR3-SDRAM LV | 1,25 |
DDR4-SDRAM | 1,20 |
DDR4-SDRAM LV | 1,05 |