Diffie-Hellman
Beschreibung
- Der Diffie-Hellman-Schlüsselaustausch oder Diffie-Hellman-Merkle-Schlüsselaustausch bzw. -Schlüsselvereinbarung (auch kurz DHM-Schlüsselaustausch oder DHM-Protokoll[1]) ist ein Protokoll zur Schlüsselvereinbarung.
- Es ermöglicht, dass zwei Kommunikationspartner über eine öffentliche, abhörbare Leitung einen gemeinsamen geheimen Schlüssel in Form einer Zahl vereinbaren können, den nur diese kennen und ein potenzieller Lauscher nicht berechnen kann.
- Der dadurch vereinbarte Schlüssel kann anschließend für ein symmetrisches Kryptosystem verwendet werden (beispielsweise Data Encryption Standard oder Advanced Encryption Standard).
- Unterschiedliche Varianten des Diffie-Hellman-Merkle-Verfahrens werden heute für die Schlüsselverteilung in den Kommunikations- und Sicherheitsprotokollen des Internets eingesetzt, beispielsweise in den Bereichen des elektronischen Handels.
- Dieses Prinzip hat damit eine wichtige praktische Bedeutung.
- Das Verfahren wurde von Whitfield Diffie und Martin Hellman entwickelt und im Jahr 1976 unter der Bezeichnung ax1x2 veröffentlicht.
- Es handelt sich um das erste der sogenannten asymmetrischen Kryptoverfahren (auch Public-Key-Kryptoverfahren), das veröffentlicht wurde.
- Wichtige Vorarbeiten leistete Ralph Merkle mit dem nach ihm benannten Merkles Puzzle.
- Wie erst 1997 bekannt wurde, entwickelten bereits in den frühen 1970er-Jahren Mitarbeiter des britischen Government Communications Headquarters (GCHQ) als Erste asymmetrische Kryptosysteme.
- Das GCHQ hat allerdings wegen der Geheimhaltung und wegen des für die Briten aus Sicht der frühen 1970er Jahre fraglichen Nutzens nie ein Patent beantragt.
- Der DHM-Schlüsselaustausch zählt zu den Krypto-Systemen auf Basis des diskreten Logarithmus (kurz
- DL-Verfahren).
- Diese basieren darauf, dass die diskrete Exponentialfunktion in gewissen zyklischen Gruppen eine Einwegfunktion ist.
- So ist in der primen Restklassengruppe die diskrete Exponentialfunktion , prim, auch für große Exponenten effizient berechenbar, deren Umkehrung, der diskrete Logarithmus, jedoch nicht.
- Es existiert bis heute kein „schneller“ Algorithmus zur Berechnung des Exponenten , bei gegebener Basis , Modul und gewünschtem Ergebnis.
- Damit prägten die Forscher mit dem Verfahren auch einen neuen Sicherheitsbegriff in der Kryptographie, der darauf basiert, dass kein effizienter Algorithmus für die Kryptoanalyse existiert
- Ein Kommunikationsprotokoll ist sicher, wenn dessen Kryptoanalyse so viel Zeit und Arbeit bedeutet, dass diese in der Praxis nicht ausgeführt werden kann.
- Das Problem, aus den beiden Nachrichten der Kommunikationspartner den geheimen Schlüssel zu berechnen, wird als Diffie-Hellman-Problem bezeichnet.
- Der DHM-Schlüsselaustausch ist allerdings nicht mehr sicher, wenn sich ein Angreifer zwischen die beiden Kommunikationspartner schaltet und Nachrichten verändern kann.
- Diese Lücke schließen Protokolle wie das Station-to-Station-Protokoll (STS), indem sie zusätzlich digitale Signaturen und Message Authentication Codes verwenden.
- Die Implementierung mittels elliptischer Kurven ist als Elliptic Curve Diffie-Hellman (ECDH) bekannt.
- Dabei werden die beim Originalverfahren eingesetzten Operationen (Multiplikation und Exponentiation) auf dem endlichen Körper ersetzt durch Punktaddition und Skalarmultiplikation auf elliptischen Kurven.
- Das -fache Addieren eines Punktes zu sich selbst (also die Multiplikation mit dem Skalar ) wird mit bezeichnet und entspricht einer Exponentiation im ursprünglichen Verfahren.
- Das Prinzip wurde Mitte der 1980er Jahre von Victor S. Miller und Neal Koblitz unabhängig voneinander vorgeschlagen.
Schlüsseltauschproblem
Kryptografiesverfahren, bei denen zwei Teilnehmer denselben geheimen Schlüssel verwenden, nennt man symmetrische Verfahren. Seien Alice und Bob Sender und Empfänger von Nachrichten über einen abhörbaren Kanal und sei Eve (von engl. eavesdropper, zu deutsch Lauscher/Lauscherin) ein Lauscher, der versucht, Nachrichten mitzulesen. Bei einem guten Kryptografiesverfahren ist es für Eve unmöglich, eine Nachricht ohne Kenntnis des Schlüssels zu entschlüsseln, selbst bei Kenntnis des Kryptografiesverfahrens. So besagt Kerckhoffs’ Prinzip, dass die Sicherheit eines Verfahrens allein auf der Geheimhaltung eines Schlüssels beruhen muss (und nicht auf der Geheimhaltung des Kryptografiesalgorithmus). Eine Nachricht, die verschlüsselt wird, heißt Klartext, der verschlüsselte Text Geheimtext.[2]
Wichtige Voraussetzung für eine sichere symmetrische Kommunikation ist also, dass der Schlüssel zwischen Alice und Bob bereits über einen sicheren Weg ausgetauscht wurde, beispielsweise durch einen vertrauenswürdigen Kurier oder bei einem direkten Treffen. Beim Schlüsseltauschproblem stellt sich nun folgendes Problem: Alice will mit Bob, der sich beispielsweise in Übersee befindet, mit einem symmetrischen Kryptografiesverfahren kommunizieren. Die beiden sind über eine unsichere Leitung verbunden und haben keinen Schlüssel ausgetauscht. Wie vereinbaren nun Alice und Bob über einen unsicheren Kanal einen gemeinsamen geheimen Schlüssel?[3]
Ein manueller Schlüsselaustausch hat den Nachteil, dass er recht unübersichtlich wird, wenn eine größere Anwendergruppe untereinander verschlüsselt kommunizieren will. Bei Kommunikationspartnern sind Schlüssel erforderlich, wenn jeder mit jedem kommunizieren will. Bei 50 Kommunikationspartnern wären somit insgesamt 1.225 Schlüssel nötig.[4]
Das Diffie-Hellman-Verfahren liefert eine elegante Lösung für diese Probleme: Es erlaubt Alice und Bob, einen geheimen Schlüssel über die öffentliche, nicht gesicherte Leitung zu vereinbaren, ohne dass Eve den Schlüssel erfährt.[3]
Geschichte und Bedeutung
Diffie-Hellman-Schlüsselaustausch/Geschichte und Bedeutung
Mathematische Grundlagen
Diffie-Hellman-Schlüsselaustausch/Mathematische Grundlagen
Funktionsweise
Diffie-Hellman-Schlüsselaustausch/Funktionsweise
Sicherheit
Diffie-Hellman-Schlüsselaustausch/Sicherheit
Elliptic Curve Diffie-Hellman (ECDH)
Kryptosysteme auf Basis elliptischer Kurven (kurz ECC-Verfahren, von engl. Elliptic Curve Cryptography) sind keine eigenständige kryptographische Verfahren, sondern bekannte DL-Verfahren, die auf besondere Weise implementiert werden. Jedes Verfahren, das auf dem diskreten Logarithmus in endlichen Körpern basiert, lässt sich in einfacher Weise auf elliptische Kurven übertragen und somit zu einem Elliptic-Curve-Kryptosystem umformen. Dabei werden die beim Originalverfahren eingesetzten Operationen (Multiplikation und Exponentiation) auf dem endlichen Körper ersetzt durch Punktaddition und Skalarmultiplikation auf elliptischen Kurven. Das -fache Addieren eines Punktes zu sich selbst (also die Multiplikation mit dem Skalar ) wird mit bezeichnet und entspricht einer Exponentiation im ursprünglichen Verfahren. Das Prinzip wurde Mitte der 1980er Jahre von Victor S. Miller[5] und Neal Koblitz[6] unabhängig voneinander vorgeschlagen.
Körper
Ein Körper ist eine Menge versehen mit zwei inneren zweistelligen Verknüpfungen „“ und „“, die meist „Addition“ und „Multiplikation“ genannt werden. Ein Körper ist bezüglich der Addition und der Multiplikation ohne Null eine abelsche Gruppe und es gelten die Distributivgesetze. Der bekannteste Körper ist die Menge der reellen Zahlen , auf der Addition und Multiplikation in üblicher Weise definiert sind.
Für eine Primzahl bildet die Menge der Zahlen zwischen und sowohl mit der Modulo-Addition als auch mit der Modulo-Multiplikation ohne Null eine Gruppe. Die Restklassen ganzer Zahlen modulo , geschrieben oder , bilden somit einen endlichen Körper (auch Galoiskörper, engl. Galois field). Außerdem gibt es für jede Primzahl und jede natürliche Zahl (bis auf Isomorphie) genau einen Körper mit Elementen, der mit oder bezeichnet wird. In der Elliptic Curve Cryptography sind insbesondere die beiden Spezialfälle und von Bedeutung, also und . Mit diesen lassen sich ECC-Verfahren am besten realisieren.[7]
Elliptische Kurven
Eine elliptische Kurve (EC) ist eine Menge von Punkten mit Werten aus einem Körper , die eine kubische Gleichung der folgenden Form erfüllen:
Die (reellen) Koeffizienten und müssen dabei die Bedingung erfüllen, um Singularitäten auszuschließen.
Eine elliptische Kurve ist eine glatte algebraische Kurve der Ordnung 3 in der projektiven Ebene. Dargestellt werden elliptische Kurven meist als Kurven in der affinen Ebene, sie besitzen aber noch einen zusätzlichen Punkt im Unendlichen, der hier als (sprich „O“) bezeichnet wird, jedoch nicht mit dem Nullpunkt des Koordinatensystems zu verwechseln ist. Über dem Körper der reellen Zahlen bilden die Punkte eine Kurve in der reellen Ebene.[8]
Eine wichtige Eigenschaft elliptischer Kurven ist folgende: Schneidet eine Gerade eine solche Kurve, dann gibt es genau drei Schnittpunkte. Dabei treten folgende Fälle auf:
- Bei einer Geraden, die parallel zur -Achse verläuft, ist einer der drei Schnittpunkte .
- Bei einer Geraden, welche die Kurve berührt, wird der Berührpunkt als doppelter Schnittpunkt gezählt.
- Bei allen anderen Geraden sind die Schnittpunkte offensichtlich.[9]
Durch diese Eigenschaft lässt sich mit Hilfe elliptischer Kurven eine Gruppe definieren:
Sei die Punktmenge einer elliptischen Kurve, vereinigt mit dem Punkt im Unendlichen. Man definiert die Gruppenoperation, die üblicherweise als Punktaddition bezeichnet wird, wie folgt:
- Um die Summe zweier Punkte und zu berechnen, zeichne eine Gerade durch und (falls , zeichne die Tangente an EC durch )
- Finde den dritten Schnittpunkt dieser Geraden mit der Kurve EC. (Falls die Gerade parallel zur -Achse läuft, so ist dieser Schnittpunkt .)
- Die Summe ist der Punkt von EC, der durch Spiegelung von an der -Achse entsteht. Die Spiegelung von ist wiederum .[8]
Das neutrale Element der Gruppe ist . Es gilt für alle Punkte der elliptischen Kurve. Das Inverse eines Punktes erhält man, indem man an ihn eine Gerade anlegt, die parallel zur -Achse verläuft. Ist diese Gerade eine Tangente, dann ist der Punkt selbst sein inverses Element.[8][9]
Der Punkt wird mit bezeichnet, entsprechend definiert man als -fache Addition des Punktes . Ist nicht der -Punkt, kann auf diese Weise jeder Punkt der Kurve E erreicht werden (d. h., zu jedem Punkt auf der Kurve existiert eine natürliche Zahl mit ), wenn man die richtigen Erzeugenden der Gruppe kennt. (Siehe auch Abschnitt Gruppenoperation im Artikel „Elliptische Kurve“)
Die Aufgabe, aus gegebenen Punkten diesen Wert zu ermitteln, wird als Diskreter-Logarithmus-Problem der elliptischen Kurven (kurz ECDLP) bezeichnet. Es wird angenommen, dass das ECDLP (bei geeigneter Kurvenwahl) schwer ist, d. h. nicht effizient gelöst werden kann. Damit bieten sich elliptische Kurven an, um auf ihnen asymmetrische Kryptosysteme zu realisieren.
Sehr anschaulich ist die Konstruktion für , da die Punkte in der reellen Ebene ausgedrückt werden können. Diese Konstruktion kann jedoch auf jeden Körper übertragen werden. In der Kryptographie sind elliptische Kurven der Form und von Bedeutung.
Beispiel:
Sei die elliptische Kurve
über dem Körper gegeben.[10]
Es ist also und und es gilt . Die Menge aller mit und ist also zusammen mit eine elliptische Kurve über .
Daraus ergeben sich die folgenden Punkte:
Punkte | |||
---|---|---|---|
und | , | ||
– | – | ||
und | , | ||
und | , | ||
und | , | ||
– |
Diffie-Hellman auf Basis elliptischer Kurven
Bei Kryptosystemen auf Basis elliptischer Kurven werden statt Rechenoperationen in Rechenoperationen in oder verwendet. Wiederum existieren in diesen Körpern effiziente Algorithmen zur Berechnung der Potenzfunktion, für die Berechnung des Logarithmus dagegen nicht.
Statt auf einen Modulus müssen sich Alice und Bob nun auf eine bestimmte elliptische Kurve einigen, d. h. auf einen Körper (bzw. ) und eine darauf aufbauende Gruppe (bzw. ). Alle Parameter, die im Exponenten stehen, sind (wie bisher) natürliche Zahlen, während die Basis einer Potenz ein Element von ist.[11]
Eine Exponentiation über ist aufwendiger als eine Exponentiation über , da sie sich aus mehreren Rechenoperationen in zusammensetzt. Dafür ist auch die Berechnung des Logarithmus in wesentlich „schwieriger“. Der zentrale Vorteil bei der Verwendung von ist daher, dass Alice und Bob bei gleicher Sicherheit eine Gruppe kleinerer Mächtigkeit verwenden können. Dies hat kürzere Schlüssellängen, kürzere Signaturen und kürzere Rechenzeiten zur Folge.[11]
Die Komplexität des Logarithmus nimmt in mit linear zu, in dagegen „nur“ logarithmisch. Eine Schlüssellänge von 1.024 Bit auf Basis des diskreten Logarithmus kann beispielsweise durch Verwendung elliptischer Kurven auf 200 Bit verkürzt werden, ohne dass dabei Sicherheitseinbußen entstehen. Die Einsparung an Rechenzeit wird meist um einen Faktor 10 angegeben.[11]
Ephemeral Diffie-Hellman
Im Zusammenhang des Kryptografiesprotokolls Transport Layer Security (TLS) bezeichnet Ephemeral Diffie-Hellman (: kurzlebig, flüchtig) die Verwendung von Diffie-Hellman mit jeweils neuen Parametern für jede neue TLS-Sitzung. Bei statischem Diffie-Hellman werden für jede TLS-Sitzung dieselben Parameter wiederverwendet, die sich aus einem Public-Key-Zertifikat herleiten. In beiden Fällen wird derselbe Algorithmus verwendet und lediglich die Parameter unterscheiden sich.
Die Verwendung von Ephemeral Diffie-Hellman zur Aushandlung eines symmetrischen Sitzungsschlüssels bietet Forward Secrecy, im Gegensatz zur verschlüsselten Übertragung eines Sitzungsschlüssels mit einem Public-Key-Kryptografiesverfahren, zum Beispiel RSA.
Weblinks
- Bundesamt für Sicherheit in der Informationstechnik (BSI): BSI – Technische Richtlinien: Kryptographische Verfahren: Empfehlungen und Schlüssellängen Version 2016-01, Stand 15. Februar 2016.
- ECRYPT II: European Network of Excellence in Cryptology II
- Steven Levy: The Open Secret – Public key cryptography – the breakthrough that revolutionized email and ecommerce – was first discovered by American geeks. Right? Wrong. In: WIRED (veröffentlicht: 4. Januar 1999; abgerufen: 9. Mai 2016)
Einzelnachweise
- ↑ So u. a. Yiu Shing Terry Tin u. a.: Provably Secure Mobile Key Exchange: Applying the Canetti-Krawczyk Approach. In: Rei Safavi-Naini, Jennifer Seberry: Information Security and Privacy. 8th Australasian Conference, ACISP 2003, Springer: Berlin, Heidelberg, 2003, S. 166–179.
- ↑ Schmeh: Kryptografie. 5. Aufl., 2013, S. 39–42.
- ↑ 3,0 3,1 Ertel: Angewandte Kryptographie. 4. Aufl., 2012, S. 77; Buchmann: Einführung in die Kryptographie. 3. Aufl., 2004, S. 153.
- ↑ Schmeh: Kryptografie. 5. Aufl., 2013, S. 176.
- ↑ Victor S. Miller: Use of Elliptic Curves in Cryptography. In: Advances in Cryptology – CRYPTO ’85 Proceedings (= Lecture Notes in Computer Science. 218). Springer, 1986, S. 417–426
- ↑ Neal Koblitz: Elliptic Curve Cryptosystems. In: Mathematics of Computation 48, Nr. 177, American Mathematical Society, 1987, S. 203–209.
- ↑ Schmeh: Kryptografie. 5. Aufl., 2013, S. 212.
- ↑ 8,0 8,1 8,2 Beutelspacher, Schwenk, Wolfenstetter: Moderne Verfahren der Kryptographie. 8. Aufl., 2015, S. 148.
- ↑ 9,0 9,1 Schmeh: Kryptografie. 5. Aufl., 2013, S. 214–215.
- ↑ Washington: Elliptic Curves. 2. Aufl., 2008, S. 95–97.
- ↑ 11,0 11,1 11,2 Schmeh: Kryptografie. 5. Aufl., 2013, S. 215.