Maximum Transmission Unit: Unterschied zwischen den Versionen

Aus Foxwiki
Subpages:
Keine Bearbeitungszusammenfassung
 
(85 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
'''topic''' kurze Beschreibung
'''Maximum Transmission Unit''' (MTU) - Maximale [[Datagramm]]-Größe ([[OSI-Schicht 3]]), das ohne Zerlegung in einen Frame auf OSI-Schicht 2 passt
 
== Beschreibung ==
== Beschreibung ==
'''MTU''' (Maximum Transmission Unit) beschreibt die maximale Paketgröße eines Protokolls der Vermittlungsschicht (Schicht 3) des OSI-Modells in Byte, die ohne Zerlegung in den Rahmen (engl. „Frame“) eines Netzes der Sicherungsschicht (Schicht 2) passt.
{| class="wikitable" style="float:right; margin-left: 20px;"  
* Das Paket passt in die Nutzlast (Payload) des Protokolls der Sicherungsschicht
|+ Typische MTU-Größen
* Die maximale Größe der Nutzlast der Sicherungsschicht wird auch oft als MTU der Sicherungsschicht (engl. 'link MTU') bezeichnet
==Typische MTU-Größen==
{| class="wikitable"
|+  
! Medium
! Medium
! MTU in Bytes
! MTU in Bytes
Zeile 12: Zeile 9:
| Hyperchannel || 65535
| Hyperchannel || 65535
|-
|-
| Token Ring (4)(802.5) || 4464
| [[Token Ring]](4)(802.5) || 4464
|-
|-
| Token Ring (16) || 17914
| [[Token Ring]](16) || 17914
|-
|-
| FDDI || 4352
| [[FDDI]] || 4352
|-
|-
| Ethernet || 1500
| [[Ethernet]] || 1500
|-
|-
| Ethernet#Gigabit-Ethernet|Gigabit Ethernet mit Jumboframes || 9000
| [[Ethernet#Gigabit-Ethernet|Gigabit Ethernet]]<br />mit Jumboframes || 9000
|-
|-
| PPP over Ethernet|PPPoE (z. B. DSL) || ≤ 1492
| [[PPP over Ethernet|PPPoE]] (z.&nbsp;B.&nbsp;DSL) || ≤ 1492
|-
|-
| Serial Line Internet Protocol|SLIP / Point-to-Point Protocol|PPP (low delay) || 296
| [[Serial Line Internet Protocol|SLIP]]/[[Point-to-Point Protocol|PPP]] (low delay) || 296
|-
|-
| X.25 || 576
| [[X.25]] || 576
|-
|-
| FibreChannel || theoretisch unbegrenzt
| [[FibreChannel]] || theoretisch unbegrenzt
|-
|-
| Integrated Services Digital Network|ISDN || 576
| [[Integrated Services Digital Network|ISDN]] || 576
|-
|-
| DQDB ||
| [[DQDB]] ||
|-
|-
| HIPPI ||
| HIPPI ||
|-
|-
| Asynchronous Transfer Mode|ATM || 4500, s. u.
| [[Asynchronous Transfer Mode|ATM]] || 4500, s.&nbsp;u
|-
|-
| ARCNET ||
| [[ARCNET]] ||
|-
|-
| 802.11 || 2312 (WiFi)
| [[802.11]] || 2312 (WiFi)
|}
|}


== Installation ==
; Maximale Paketgröße eines Protokolls der Vermittlungsschicht
== Anwendungen ==
* Schicht 3 des OSI-Modells
=== Fehlerbehebung ===
* gemessen in Oktetten
== Syntax ==
* welche ohne Fragmentierung in den Rahmen (engl. "Frames") eines Netzes der Sicherungsschicht (Schicht 2) übertragen werden kann
=== Optionen ===
* Diese Paketgröße passt also in die Nutzlast (Payload) des Protokolls der Sicherungsschicht
=== Parameter ===
* Die maximale Größe der Nutzlast der Sicherungsschicht wird auch oft als MTU der Sicherungsschicht (engl. 'link MTU') bezeichnet
=== Umgebungsvariablen ===
=== Exit-Status ===
== Konfiguration ==
=== Dateien ===
== Sicherheit ==
== Dokumentation ==
=== RFC ===
=== Man-Pages ===
=== Info-Pages ===
== Siehe auch ==
== Links ==
=== Projekt-Homepage ===
=== Weblinks ===
=== Einzelnachweise ===
<references />
== Testfragen ==
<div class="toccolours mw-collapsible mw-collapsed">
''Testfrage 1''
<div class="mw-collapsible-content">'''Antwort1'''</div>
</div>
<div class="toccolours mw-collapsible mw-collapsed">
''Testfrage 2''
<div class="mw-collapsible-content">'''Antwort2'''</div>
</div>
<div class="toccolours mw-collapsible mw-collapsed">
''Testfrage 3''
<div class="mw-collapsible-content">'''Antwort3'''</div>
</div>
<div class="toccolours mw-collapsible mw-collapsed">
''Testfrage 4''
<div class="mw-collapsible-content">'''Antwort4'''</div>
</div>
<div class="toccolours mw-collapsible mw-collapsed">
''Testfrage 5''
<div class="mw-collapsible-content">'''Antwort5'''</div>
</div>


[[Kategorie:Entwurf]]
; Die maximale Größe eines Rahmens der Sicherungsschicht lässt sich so berechnen


= TMP =
{|
| style="vertical-align:top" | ''Maximale&nbsp;Rahmengröße&nbsp;='' || ''Größte MTU aller benutzten Protokolle der Vermittlungsschicht + Größe der Sicherungsschichtheader''
|}


; Hardware und Technik
* Die MTU wird durch Einstellungen im Rahmen der Möglichkeiten der verwendeten Hardware und Technik bestimmt
* Sie kann auf derselben Schnittstelle unterschiedliche Werte für unterschiedliche Protokolle der Vermittlungsschicht (z.&nbsp;B.&nbsp;IPv4 oder IPv6) annehmen
* Alle an einem Schicht-2-Netz beteiligten Schnittstellen, welche Protokolle höherer Schichten verarbeiten, müssen auf denselben Wert für die jeweiligen Schicht-3-Protokolle eingestellt werden


== Falsche MTU-Größe ==
=== Terminologie ===
; Probleme durch falsche MTU-Größe können sehr subtil sein
* Im OSI-Modell spricht man auf der Vermittlungsschicht von einem Paket (engl. 'packet'), während man auf der Sicherungsschicht von einem Rahmen (engl. 'frame') spricht
* Es ist möglich einem Webserver zu erreichen, die Dateiübertragung schlägt jedoch fehl
* Die Terminologie, welche das OSI-Modell für die Einheiten auf den verschiedenen OSI-Modellschichten verwendet, hat zu einiger Verwirrung um den Begriff der MTU geführt
* Verbindung zu einem Chat-Server funktioniert, aber die Informationen darüber, wer online ist, sind unvollständig


==Analyse==
==== Abweichende Verwendung ====
===Berechnung der maximalen Größe eines Rahmens der Sicherungsschicht===
Abweichende Verwendung des Begriffs
Maximale Rahmengröße = Größte MTU aller benutzten Protokolle der Vermittlungsschicht + Größe der Sicherungsschichtheader
; Cisco und Juniper
Verwenden den Begriff MTU in ihrer Konfigurationssyntax als maximale Rahmen- bzw.&nbsp;Paketgröße der zu konfigurierenden Netzwerkschicht


=== Ermittlung der MTU-Größe ===
; Folgende Einstellungen entsprechen einander
* Zu diesem Zweck können Sie 'ping' verwenden, um ein Paket der erforderlichen Größe mit gesetztem Bit "Nicht fragmentieren" zu senden
* Bei beiden Herstellern bedeutet das erste Auftauchen des Begriffes die maximale Ethernet Rahmengröße und nicht die maximale Größe der Nutzlast (Maximum Segment Size)
* Es ist auch eine gute Idee, eine Paketanzahl von eins zu verwenden, da es nicht sinnvoll ist, mehr Netzwerkverkehr zu senden als Sie brauchen
* diese muss folglich einige Byte größer gewählt werden als die dann folgenden Einstellungen für die verschiedenen Schicht-3 Protokolle


; Hinweis
; Paket- und Rahmengröße
* Die beim Befehl ping angegebene Größe entspricht der Anzahl der zu sendenden Datenbytes.
* Unter der „packet size“ (Paketgröße) wird fälschlicherweise teils die „frame size“ (Rahmengröße) verstanden, jedoch stellt die obige Definition (siehe RFC 1122 und RFC 791) dies eindeutig klar
* Diese muss also 28 Byte kleiner sein als die tatsächliche Paketgröße, um die Größe des Paket-Headers zu berücksichtigen.
* Ein Spezialfall liegt vor, wenn ein Schicht-2-Protokoll über ein anderes Schicht-2-Protokoll getunnelt wird, denn dann nennt man auch die Nutzlast selbst "Rahmen" (engl. 'frame')


==Beispiel Ethernet==
=== Path MTU (PMTU) ===
* Ein Ethernet Frame besteht aus zwei Teilen: dem ''„Header“'', in dem Quell- und Zieladressen und andere wichtige Parameter für den Versand kodiert sind, und der Nutzlast, deren Größe durch die MTU bestimmt ist.
; Maximale Paketgröße, die entlang der gesamten Wegstrecke übertragen werden kann, ohne einer Fragmentierung zu unterliegen
* In diesem Versuch ist die Größe der MTU mit 1500 Byte vorgegeben. Mit Hilfe des ping-Programmes wird ein ''„Frame“'' erzeugt, der dann im Netzwerk über das Ethernet-Protokoll versendet wird.
* Sie ist die kleinsten MTU aller Schicht-2-Teilstücke im Pfad
* Die Verwendung des Begriffes Nutzlast ist hier mehrdeutig, da im OSI-Modell die verschiedenen Protokolle ineinander eingepackt (gekapselt) werden.
* Die PMTU kann automatisch durch PMTU Discovery (PMTUD) ermittelt werden
* Der im Versuch verwendete Linux-Befehl <tt>ping -s 1472 10.0.0.1</tt> (Windows-Befehl <tt>ping -l 1472 10.0.0.1</tt>) sendet dann ein Internet Control Message Protocol|ICM-Paket mit der Nutzlast von 1472 Bytes an die IP-Adresse 10.0.0.1.
ping -f -l 1472 10.0.0.1
          1472 bytes Nutzlast des ICMP-Protokolles (Transportschicht)
        +    8 bytes ICMP-Header (Transportschicht)
        +  20 bytes IPv4-Header (der Vermittlungsschicht)
        -------------
        = 1500 bytes (Nutzlast von Ethernet)
        +  14 bytes (Header der Sicherungsschicht)
        +    4 bytes (Frame Check Sequence)
        -------------
        = 1518 bytes (kompletter Ethernet Frame)


* Mit einem Sniffer wie z. B. Wireshark wird als Ethernet Header nur die Größe von 14 Byte angezeigt.  
; Beispiel Brief
* Hierzu kommt noch die 4 Byte große Frame Check Sequence am Ende des Frames.
* Das Konzept der MTU auf die Post adaptiert ist verständlicher
* Falls Virtual Local Area Network|VLANs verwendet werden, besteht der Header der Sicherungsschicht aus 18 Byte und der gesamte Ethernet Frame kann eine Größe von bis zu 1522 Byte annehmen.
* Eine MTU 50 g heißt, dass man max. 50 g Inhalt (entspricht der Packet Size) in den Brief einpacken kann
* Würde IPv6 verwendet, änderte sich obige Berechnung dahingehend, dass der IPv6-Header der Vermittlungsschicht 40 statt 20 Byte beträgt und damit statt 1472 Byte ICMP-Nutzlast nur 1452 Byte möglich wären.
* Der Brief insgesamt kann selbst aber schwerer als 50 g sein, da im Normalfall noch ein Briefumschlag z.B. 4 g und eine Briefmarke 0,3 g hinzukommt
* Bezahlt und verschickt wird der ganze Brief von 54,3 g Masse entsprechend der Frame Size


Oft ist es hilfreich dem ping-Programm vorzugeben das ''„don’t fragment (DF) bit“'' für die Testpakete im IPv4-Header zu setzen denn dann erhält man eine Nachricht, falls die MTU überschritten wird.
== Beispiel Ethernet ==
; Ein Ethernet Frame besteht aus zwei Teilen: dem ''„Header“'', in dem Quell- und Zieladressen und andere wichtige Parameter für den Versand kodiert sind, und der Nutzlast, deren Größe durch die MTU bestimmt ist


'''Linux'''
; In diesem Versuch ist die Größe der MTU mit 1500 Byte vorgegeben
ping -M do -s 1472 10.0.0.1
* Mit Hilfe des [[Ping (Datenübertragung)|ping]]-Programmes wird ein ''„Frame“'' erzeugt, der dann im Netzwerk über das Ethernet-Protokoll versendet wird
* Die Verwendung des Begriffes Nutzlast ist hier mehrdeutig, da im OSI-Modell die verschiedenen Protokolle ineinander eingepackt ([[Datenkapselung (Netzwerktechnik)|gekapselt]]) werden
* Der im Versuch verwendete [[Linux]]-Befehl <span style="font-family:monospace;">ping -s 1472 10.0.0.1</span> ([[Windows]]-Befehl <span style="font-family:monospace;">ping -l 1472 10.0.0.1</span>) sendet dann ein [[Internet Control Message Protocol|ICMP]]-Paket mit der Nutzlast von 1472 Bytes an die [[IP-Adresse]] 10.0.0.1


'''Windows'''
  # ping -f -s 1472 10.0.0.1
  ping -l 1472 -f 10.0.0.1
1472 bytes Nutzlast des ICMP-Protokolles (Vermittlungsschicht)
Leicht sichtbar machen lässt sich die ''Path MTU'' mit dem Programm ''tracepath'' für IPv4 bzw. ''tracepath6'' für IPv6.
+ 8 bytes ICMP-Header (Vermittlungsschicht)
+ 20 bytes IPv4-Header (Vermittlungsschicht)
-------------
= 1500 bytes (Nutzlast von Ethernet)
+ 14 bytes (Header der Sicherungsschicht)
+ 4 bytes (Frame Check Sequence)
-------------
= 1518 bytes (kompletter Ethernet Frame)


[[Kategorie:OSI:02]]
; Mit einem Sniffer wie z.&nbsp;B.&nbsp;[[Wireshark]] wird als Ethernet Header nur die Größe von 14 Byte angezeigt
* Hierzu kommt noch die 4 Byte große [[Frame Check Sequence]] am Ende des Frames
* Falls [[Virtual Local Area Network|VLANs]] verwendet werden, besteht der Header der Sicherungsschicht aus 18 Byte und der gesamte Ethernet Frame kann eine Größe von bis zu 1522 Byte annehmen
* Würde IPv6 verwendet, änderte sich obige Berechnung dahingehend, dass der IPv6-Header der Vermittlungsschicht 40 statt 20 Byte beträgt und damit statt 1472 Byte ICMP-Nutzlast nur 1452 Byte möglich wären


= Wikipedia =
; Zum Prüfen der MTU eines Pfades ist es hilfreich, dem ping-Programm vorzugeben, das ''„don’t fragment (DF) bit“'' für die Testpakete im IPv4-Header zu setzen (für Linux z.&nbsp;B.&nbsp;<span style="font-family:monospace;">ping -M do -s 1472 10.0.0.1</span>, für Windows: <span style="font-family:monospace;">ping -l 1472 -f 10.0.0.1</span> ), denn dann erhält man eine Nachricht, falls die MTU überschritten wird
Die '''Maximum Transmission Unit''' ('''MTU'''; deutsch ''maximale Übertragungseinheit'') beschreibt die maximale [[Datenpaket|Paketgröße]] eines [[Netzwerkprotokoll|Protokolls]] der [[Vermittlungsschicht]] (Schicht 3) des [[OSI-Modell]]s, gemessen in [[Oktett (Informatik)|Oktetten]] ([[Byte]]s), welche ohne [[IP-Fragmentierung|Fragmentierung]] in den Rahmen (engl. „[[Datenframe|Frame]]“) eines Netzes der [[Sicherungsschicht]] (Schicht 2) übertragen werden kann.
* Leicht sichtbar machen lässt sich die ''Path MTU'' mit dem Programm ''tracepath'' für IPv4 bzw.&nbsp;''tracepath6'' für IPv6
* Diese Paketgröße passt also in die Nutzlast ([[Nutzdaten|Payload]]) des Protokolls der Sicherungsschicht.
* Die maximale Größe der Nutzlast der Sicherungsschicht wird auch oft als MTU der Sicherungsschicht (engl. 'link MTU') bezeichnet.
* Die maximale Größe eines Rahmens der Sicherungsschicht lässt sich so berechnen:


{|
=== Beispiel Ethernet ===
| style="vertical-align:top" | ''Maximale&nbsp;Rahmengröße&nbsp;='' || ''Größte MTU aller benutzten Protokolle der Vermittlungsschicht + Größe der Sicherungsschichtheader''
; Ethernetrahmen bestehen aus zwei Teilen
|}
* dem „Header“, in dem Quell- und Zieladressen und andere wichtige Parameter für den Versand kodiert sind, und der Nutzlast, deren Größe durch die MTU bestimmt ist
* In diesem Versuch ist die Größe der MTU mit 1500 Byte vorgegeben
* Mit Hilfe des ping-Programmes wird ein „Frame“ erzeugt, der dann im Netzwerk über das Ethernet-Protokoll versendet wird
* Die Verwendung des Begriffes Nutzlast ist hier mehrdeutig, da im OSI-Modell die verschiedenen Protokolle ineinander eingepackt (gekapselt) werden


Die MTU wird durch Einstellungen im Rahmen der Möglichkeiten der verwendeten Hardware und Technik bestimmt.  
ping -s 1472 10.0.0.1 (Windows-Befehl ping -l 1472 10.0.0.1)
* Sie kann auf derselben [[Schnittstelle]] unterschiedliche Werte für unterschiedliche Protokolle der Vermittlungsschicht (z.&nbsp;B. [[IPv4]] oder [[IPv6]]) annehmen.
* sendet ein ICMP-Paket mit der Nutzlast von 1472 Bytes an die IP-Adresse 10.0.0.1
* Alle an einem Schicht-2-Netz beteiligten Schnittstellen, welche Protokolle höherer Schichten verarbeiten, müssen auf denselben Wert für die jeweiligen Schicht-3-Protokolle eingestellt werden.


Im OSI-Modell spricht man auf der Vermittlungsschicht von einem Paket (engl. 'packet'), während man auf der Sicherungsschicht von einem Rahmen (engl. 'frame') spricht.
ping -f -l 1472 10.0.0.1
* Die Terminologie, welche das OSI-Modell für die Einheiten auf den verschiedenen OSI-Modellschichten verwendet, hat zu einiger Verwirrung um den Begriff der MTU geführt (siehe [[#Abweichende Verwendung des Begriffs bei wichtigen Herstellern|abweichende Verwendung bei wichtigen Herstellern]]).
1472 bytes Nutzlast des ICMP-Protokolles (Transportschicht)
* Unter der ''„packet size“'' (Paketgröße) wird fälschlicherweise teils die ''„frame size“'' (Rahmengröße) verstanden, jedoch stellt die obige Definition (siehe RFC 1122 und RFC 791) dies eindeutig klar.
+ 8 bytes ICMP-Header (Transportschicht)
+ 20 bytes IPv4-Header (der Vermittlungsschicht)
-------------
= 1500 bytes (Nutzlast von Ethernet)
+ 14 bytes (Header der Sicherungsschicht)
+ 4 bytes (Frame Check Sequence)
-------------
= 1518 bytes (kompletter Ethernetrahmen)


Ein Spezialfall liegt vor, wenn ein Schicht-2-Protokoll über ein anderes Schicht-2-Protokoll [[Tunnel (Rechnernetz)|getunnelt]] wird, denn dann nennt man auch die Nutzlast selbst „Rahmen“ (engl. 'frame').
; Mit einem Sniffer (wie [[Wireshark]])
{| class="wikitable float-right"
* wird als Ethernet Header nur die Größe von 14 Byte angezeigt
|+ Typische MTU-Größen
* Hierzu kommt noch die 4 Byte große Frame Check Sequence am Ende des Frames
! Medium
! MTU in Bytes
|-
| Hyperchannel || 65535
|-
| [[Token Ring]](4)(802.5) || 4464
|-
| [[Token Ring]](16) || 17914
|-
| [[FDDI]] || 4352
|-
| [[Ethernet]] || 1500
|-
| [[Ethernet#Gigabit-Ethernet|Gigabit Ethernet]]<br />mit Jumboframes || 9000
|-
| [[PPP over Ethernet|PPPoE]] (z.&nbsp;B. DSL) || ≤ 1492
|-
| [[Serial Line Internet Protocol|SLIP]]/[[Point-to-Point Protocol|PPP]] (low delay) || 296
|-
| [[X.25]] || 576
|-
| [[FibreChannel]] || theoretisch unbegrenzt
|-
| [[Integrated Services Digital Network|ISDN]] || 576
|-
| [[DQDB]] ||
|-
| HIPPI ||
|-
| [[Asynchronous Transfer Mode|ATM]] || 4500, s.&nbsp;u.
|-
| [[ARCNET]] ||
|-
| [[802.11]] || 2312 (WiFi)
|}


Die ''Path MTU (PMTU)'' beschreibt die maximale Paketgröße, die entlang der gesamten Wegstrecke übertragen werden kann, ohne einer [[IP-Fragmentierung|Fragmentierung]] zu unterliegen.
; Falls VLANs verwendet werden
* Sie ist damit gleich der kleinsten MTU aller Schicht-2-Teilstücke im Pfad.
* besteht der Header der Sicherungsschicht aus 18 Byte
* Die PMTU kann automatisch durch ''[[Path MTU Discovery|PMTU Discovery (PMTUD)]]'' ermittelt werden.
* der gesamte Ethernetrahmen kann eine Größe von bis zu 1522 Byte annehmen


== Beispiel Brief ==
; Würde IPv6 verwendet
Das Konzept der MTU kann auf den Briefverkehr adaptiert werden.
* änderte sich obige Berechnung dahingehend, dass der IPv6-Header der Vermittlungsschicht 40 statt 20 Byte beträgt und damit statt 1472 Byte ICMP-Nutzlast nur 1452 Byte möglich wären
* Ein Kompaktbrief darf maximal 50&nbsp;g wiegen.
* Oft ist es hilfreich dem ping-Programm vorzugeben das „don’t fragment (DF) bit“ für die Testpakete im IPv4-Header zu setzen
* Zum Transport benötigt der Brief einen Briefumschlag z.&nbsp;B. 4&nbsp;g und eine Briefmarke 0,3&nbsp;g.
* Diese 4,3&nbsp;g entsprechen der Größe der Sicherungsschichtheader.
* Daraus ergibt sich, dass die MTU (der maximale Inhalt für einen Kompaktbrief oder ''Packet Size'') 50&nbsp;g – 4,3&nbsp;g = 45,7&nbsp;g beträgt.
Will man mehr Gewicht verschicken, muss man auf ein anderes Protokoll (einen Großbrief mit mehr Porto) ausweichen oder den Inhalt auf mehrere Briefe aufteilen, also ''fragmentieren''.


== Beispiel Ethernet ==
für Linux z.&nbsp;B&nbsp; ping -M do -s 1472 10.0.0.1
Ein Ethernet Frame besteht aus zwei Teilen: dem ''„Header“'', in dem Quell- und Zieladressen und andere wichtige Parameter für den Versand kodiert sind, und der Nutzlast, deren Größe durch die MTU bestimmt ist.


In diesem Versuch ist die Größe der MTU mit 1500 Byte vorgegeben.
für Windows
* Mit Hilfe des [[Ping (Datenübertragung)|ping]]-Programmes wird ein ''„Frame“'' erzeugt, der dann im Netzwerk über das Ethernet-Protokoll versendet wird.
ping -l 1472 -f 10.0.0.1
* Die Verwendung des Begriffes Nutzlast ist hier mehrdeutig, da im OSI-Modell die verschiedenen Protokolle ineinander eingepackt ([[Datenkapselung (Netzwerktechnik)|gekapselt]]) werden.
* denn dann erhält man eine Nachricht, falls die MTU überschritten wird
* Der im Versuch verwendete [[Linux]]-Befehl <span style="font-family:monospace;">ping -s 1472 10.0.0.1</span> ([[Windows]]-Befehl <span style="font-family:monospace;">ping -l 1472 10.0.0.1</span>) sendet dann ein [[Internet Control Message Protocol|ICMP]]-Paket mit der Nutzlast von 1472 Bytes an die [[IP-Adresse]] 10.0.0.1.
* Leicht sichtbar machen lässt sich die Path MTU mit dem Programm tracepath für IPv4 bzw.&nbsp;tracepath6 für IPv6
# ping -f -s 1472 10.0.0.1
          1472 bytes Nutzlast des ICMP-Protokolles (Vermittlungsschicht)
        +    8 bytes ICMP-Header (Vermittlungsschicht)
        +  20 bytes IPv4-Header (Vermittlungsschicht)
        -------------
        = 1500 bytes (Nutzlast von Ethernet)
        +  14 bytes (Header der Sicherungsschicht)
        +    4 bytes (Frame Check Sequence)
        -------------
        = 1518 bytes (kompletter Ethernet Frame)


Mit einem Sniffer wie z.&nbsp;B. [[Wireshark]] wird als Ethernet Header nur die Größe von 14 Byte angezeigt.
=== Jumbo Frames für Gigabit Ethernet ===
* Hierzu kommt noch die 4 Byte große [[Frame Check Sequence]] am Ende des Frames.
; Jumbo Frames können deutlich mehr als 1518 Oktette beinhalten
* Falls [[Virtual Local Area Network|VLANs]] verwendet werden, besteht der Header der Sicherungsschicht aus 18 Byte und der gesamte Ethernet Frame kann eine Größe von bis zu 1522 Byte annehmen.
* und damit ist es möglich, größere Pakete unfragmentiert zu übertragen
* Würde IPv6 verwendet, änderte sich obige Berechnung dahingehend, dass der IPv6-Header der Vermittlungsschicht 40 statt 20 Byte beträgt und damit statt 1472 Byte ICMP-Nutzlast nur 1452 Byte möglich wären.


Zum Prüfen der MTU eines Pfades ist es hilfreich, dem ping-Programm vorzugeben, das ''„don’t fragment (DF) bit“'' für die Testpakete im IPv4-Header zu setzen (für Linux z.&nbsp;B. <span style="font-family:monospace;">ping -M do -s 1472 10.0.0.1</span>, für Windows: <span style="font-family:monospace;">ping -l 1472 -f 10.0.0.1</span> ), denn dann erhält man eine Nachricht, falls die MTU überschritten wird.
; Positiv
* Leicht sichtbar machen lässt sich die ''Path MTU'' mit dem Programm ''tracepath'' für IPv4 bzw. ''tracepath6'' für IPv6.
* wiegt, dass der Protokoll-Overhead bei der Verwendung von Jumbo Frames reduziert werden kann und Router weniger Pakete behandeln müssen


== Einfluss auf andere Protokolle ==
; Allerdings
Die MTU ist ein hardwareabhängiger Wert, der sämtliche Parameter oberhalb der [[Sicherungsschicht]] des OSI-Modells beeinflusst.  
* ist die Terminologie bzgl.&nbsp;MTU derart uneinheitlich unter den Herstellern, dass es in der Praxis schwierig ist, von den Standardeinstellungen abzuweichen
* Am Beispiel [[Ethernet]] ist dies einfach erklärt: In diesem Netzwerk werden sämtliche Pakete der Schicht&nbsp;3, beispielsweise IP-Pakete, in „Ethernet-Frames“ übertragen.
* Die ''Nutzdaten'' dieses Ethernet-Frames (d.&nbsp;h. die IP-Pakete) dürfen den MTU-Wert nicht übersteigen.
* Die Länge der TCP-Nutzdaten ([[Maximum Segment Size]]) wird daher aus der MTU direkt berechnet.


== Andere Beispiele und Probleme ==
; Jumbo Frames sind nicht im IEEE-802.3-Standard spezifiziert
''[[Jumbo Frames]]'' für ''Gigabit Ethernet'' können deutlich mehr als 1518 Oktette beinhalten und damit ist es möglich, größere Pakete unfragmentiert zu übertragen.
* trotzdem unterstützen die meisten Hersteller von Gigabit Ethernet Switches und Routern MTUs bis 9000 Oktette
* Positiv wiegt, dass der Protokoll-Overhead bei der Verwendung von ''Jumbo Frames'' reduziert werden kann und Router weniger Pakete behandeln müssen.
* Allerdings ist die Terminologie bzgl. MTU derart uneinheitlich unter den Herstellern, dass es in der Praxis schwierig ist, von den Standardeinstellungen abzuweichen.
* Des Weiteren sind ''Jumbo Frames'' nicht im [[IEEE 802.3|IEEE-802.3]]-Standard spezifiziert, trotzdem unterstützen die meisten Hersteller von ''Gigabit Ethernet Switches'' und ''Routern'' MTUs bis 9000 Oktette.
* So hat sich als Quasistandard eine ''Path MTU'' um ca. 1500 Byte im Internet eingebürgert, die durch das weit verbreitete Ethernet sowieso meist nicht überschritten werden kann.


Mit dem Aufkommen von Internetzugängen, die auf Tunnelprotokollen basieren, zum Beispiel beim Verbindungsaufbau über das [[PPP over Ethernet|PPPoE-Protokoll]] hat die MTU an Bedeutung gewonnen.  
; Quasistandard eine Path MTU um ca. 1500 Byte
* Obwohl die ''[[Path MTU Discovery|PMTUD]]'' in diesem Fall dafür sorgen soll, dass die Kommunikation trotz der durch den Tunnel abgesenkten MTU möglich ist, gibt es immer wieder fehlkonfigurierte Firewalls, die durch Verwerfen von [[Internet Control Message Protocol|ICMP]]-Steuerpaketen die ''[[Path MTU Discovery|PMTUD]]'' stören.
* So hat sich als Quasistandard eine Path MTU um ca. 1500 Byte im Internet eingebürgert, die durch das weit verbreitete Fast Ethernet sowieso meist nicht überschritten werden kann
* Auch große Websites sind oft von diesem Konfigurationsfehler betroffen, sodass die Nutzer von getunnelten Zugängen die MTU ihrer Geräte verkleinern müssen, um auch mit diesen Sites kommunizieren zu können.


Über die optimale MTU gibt es viele Diskussionen.
; Tunnelprotokolle
* Kurz zusammengefasst:
* Mit dem Aufkommen von Internetzugängen, die auf Tunnelprotokollen basieren, zum Beispiel beim Verbindungsaufbau über das PPPoE-Protokoll hat die MTU an Bedeutung gewonnen
* einfache Optimierung: so groß wie möglich, ohne dass Probleme auftreten
* Obwohl die PMTUD in diesem Fall dafür sorgen soll, dass die Kommunikation trotz der durch den Tunnel abgesenkten MTU möglich ist, gibt es immer wieder fehlkonfigurierte Firewalls, die durch Verwerfen von ICMP-Steuerpaketen die PMTUD stören
* komplexe Optimierung: so viel kleiner als o.&nbsp;g.
* Auch große Websites sind oft von diesem Konfigurationsfehler betroffen, sodass die Nutzer von getunnelten Zugängen die MTU ihrer Geräte verkleinern müssen, um auch mit diesen Sites kommunizieren zu können
* Maximum, dass der Verschnitt der Transportzellen der unter der DSL-Schicht liegenden [[Asynchronous Transfer Mode|ATM]]-Transportschicht möglichst klein wird.


Die MTU bei ATM (4500) ist nicht zu verwechseln mit der Zellengröße (53 Bytes, 48 davon Nutzlast).
=== Optimale MTU ===
* Bei der Übertragung über einen ATM-Link werden IP-Pakete in Stücke zu je 48 Bytes zerlegt und für die Übertragung auf mehrere ATM-Zellen verteilt.
; Diskussionen über die optimale MTU
* Der Router am anderen Ende des ATM-Links sammelt diese Zellen und setzt das ursprüngliche IP-Paket wieder zusammen.
; Einfache Optimierung
* Im Gegensatz dazu wird bei der IP-Fragmentierung das Paket nicht vom Router reassembliert, sondern erst von dem Host, für den das Paket bestimmt war.
* So groß wie möglich, ohne dass Probleme auftreten


Probleme, die durch einen falschen MTU-Wert auftreten können, sind Webseiten, die gar nicht oder nur teilweise angezeigt werden.<ref>{{Internetquelle |url=https://vpntester.de/anleitung/optimale-mtu-groesse-bestimmen/ |titel= Optimale MTU Groesse bestimmen |werk= Markus Hanf, vpntester.de |datum=2018-09-03 |zugriff=2019-10-16}}</ref>
; Komplexe Optimierung
* so viel kleiner als o.&nbsp;g.&nbsp;Maximum, dass der Verschnitt der Transportzellen der unter der DSL-Schicht liegenden ATM-Transportschicht möglichst klein wird


== Abweichende Verwendung des Begriffs ==
; Oder: Einfach probieren
Cisco und Juniper verwenden den Begriff MTU in ihrer Konfigurationssyntax als maximale Rahmen- bzw. Paketgröße der zu konfigurierenden Netzwerkschicht.
* Die MTU bei ATM (4500) ist nicht zu verwechseln mit der Zellengröße (53 Bytes, 48 davon Nutzlast)
* Bei der Übertragung über einen ATM-Link werden IP-Pakete in Stücke zu je 48 Bytes zerlegt und für die Übertragung auf mehrere ATM-Zellen verteilt
* Der Router am anderen Ende des ATM-Links sammelt diese Zellen und setzt das ursprüngliche IP-Paket wieder zusammen
* Im Gegensatz dazu wird bei der IP-Fragmentierung das Paket nicht vom Router reassembliert, sondern erst von dem Host, für den das Paket bestimmt war
* Probleme, die durch einen falschen MTU-Wert auftreten können, sind Webseiten, die gar nicht oder nur teilweise angezeigt werden


Folgende Einstellungen entsprechen einander
=== Paketgrößen ===
* Bei beiden Herstellern bedeutet das erste Auftauchen des Begriffes die maximale Ethernet Rahmengröße und nicht die maximale Größe der Nutzlast (Maximum Segment Size)
; MTU und PMTU
* diese muss folglich einige Byte größer gewählt werden als die dann folgenden Einstellungen für die verschiedenen Schicht-3 Protokolle
* Die Maximum Transmission Unit (MTU) darf in einem IPv6-Netzwerk 1280 Byte nicht unterschreiten
* Somit unterschreitet auch die Path MTU (PMTU) diesen Wert nicht und es können Pakete bis zu dieser Größe garantiert ohne Fragmentierung übertragen werden
* Minimale IPv6-Implementierungen verlassen sich auf diesen Fall
* Ein IPv6-fähiger Rechner muss in der Lage sein, aus Fragmenten wieder zusammengesetzte Pakete mit einer Größe von mindestens 1500 Byte zu empfangen
* Für IPv4 beträgt dieser Wert nur 576 Byte
* Im anderen Extrem darf ein IPv6-Paket auch fragmentiert laut Payload-Length-Feld im IPv6-Header die Größe von 65.575 Byte einschließlich Kopfdaten nicht überschreiten, da dieses Feld 16 Bit lang ist (216 − 1 Byte zzgl. 40 Byte Kopfdaten)


Cisco:
; Jumbograms
interface GigabitEthernet2/3
* RFC 2675 stellt aber über eine Option des Hop-by-Hop Extension Headers die Möglichkeit zur Verfügung, Pakete mit Größen bis zu 4.294.967.335 Byte, sogenannte Jumbograms zu erzeugen
  mtu 9192
* Dies erfordert allerdings Anpassungen in Protokollen höherer Schichten, wie z.&nbsp;B.&nbsp;TCP oder UDP, da diese oft auch nur 16 Bit für Größenfelder definieren, außerdem muss bei jedem Paket, welches einen Jumbogram beinhaltet, im IPv6-Header die Payload-Length auf 0 gesetzt werden
  ip address 192.168.0.1 255.255.255.252
  ip mtu 9000
  ipv6 address 2001:DB8::1/64
  ipv6 mtu 8000
  ipv6 router isis
  clns mtu 1497
!


Juniper:
<noinclude>
interfaces {
    ge-0/0/0 {
        mtu 9192;
        unit 0 {
            family inet {
                mtu 9000;
                address 192.168.0.2/30;
            }
            family inet6 {
                mtu 8000;
                address 2001:DB8::2/64;
            }
            family iso {
                mtu 1497;
            }
        }
    }
}
<!-- Anleitungen gehören nicht in Wikipedia.
Der MTU-Wert kann wie folgt gesetzt werden:
* Mac OS X: Systemeinstellung öffnen, unter „Netzwerk“ den Netzwerkanschluss auswählen, auf den Reiter „Ethernet“ klicken, und unter MTU „eigene“ wählen und Wert eingeben
* Linux: <code>ifconfig eth0 mtu 1234</code> (1234 ist neuer Wert).
* Dies muss in einem der Startskripte angegeben werden, da es sonst immer wieder gesetzt werden muss
* Windows: Über die Netzwerkeigenschaften bzw. Systemsteuerung oder mit Programmen wie z.&nbsp;B. dem Freeware-Programm DrTcp oder tcp optimizer, um den Wert dauerhaft zu setzen
-->


== Siehe auch ==
== Anhang ==
=== Siehe auch ===
{{Special:PrefixIndex/{{BASEPAGENAME}}}}
==== Links ====
===== RFC =====
{| class="wikitable sortable options"
|-
! RFC !! Titel
|-
| [https://www.rfc-editor.org/rfc/791 791] || INTERNET PROTOCOL
|-
| [https://www.rfc-editor.org/rfc/879 879] || The TCP Maximum Segment Size and Related Topics
|-
| [https://www.rfc-editor.org/rfc/1191 1191] || Path MTU Discovery
|-
| [https://www.rfc-editor.org/rfc/1981 1981] || Path MTU Discovery for IP version 6
|-
| [https://www.rfc-editor.org/rfc/2923 2923] || TCP Problems with Path MTU Discovery
|}


* RFC 791 – INTERNET PROTOCOL
===== Weblinks =====
* RFC 879 – The TCP Maximum Segment Size and Related Topics
# https://de.wikipedia.org/wiki/Maximum_Transmission_Unit
* RFC 1191 – Path MTU Discovery
# [http://www.dslreports.com/drtcp Dr.&nbsp;TCP], eine Software zum Einstellen der MTU unter Windows, ursprünglich für DSL-Nutzer geschrieben
* RFC 1981 – Path MTU Discovery for IP version 6
# [http://www.trullowitsch.de/index.php?id=tools MTU], eine weitere Software (Freeware) zum Einstellen der MTU unter Windows
* RFC 2923 – TCP Problems with Path MTU Discovery
# [http://www.firewall.cx/tcp-analysis-section-6.php Analysing TCP Header Options – Section 6] – Ausführliche Erklärung der MTU und MSS
* [http://www.dslreports.com/drtcp Dr. TCP], eine Software zum Einstellen der MTU unter Windows, ursprünglich für DSL-Nutzer geschrieben.
* [http://www.trullowitsch.de/index.php?id=tools MTU], eine weitere Software (Freeware) zum Einstellen der MTU unter Windows.
* [http://www.firewall.cx/tcp-analysis-section-6.php Analysing TCP Header Options – Section 6] – Ausführliche Erklärung der MTU und MSS


== Einzelnachweise ==
<references />


[[Kategorie:Rechnernetze]]
[[Kategorie:OSI/2 Data Link]]
<noinclude>

Aktuelle Version vom 9. Januar 2024, 09:54 Uhr

Maximum Transmission Unit (MTU) - Maximale Datagramm-Größe (OSI-Schicht 3), das ohne Zerlegung in einen Frame auf OSI-Schicht 2 passt

Beschreibung

Typische MTU-Größen
Medium MTU in Bytes
Hyperchannel 65535
Token Ring(4)(802.5) 4464
Token Ring(16) 17914
FDDI 4352
Ethernet 1500
Gigabit Ethernet
mit Jumboframes
9000
PPPoE (z. B. DSL) ≤ 1492
SLIP/PPP (low delay) 296
X.25 576
FibreChannel theoretisch unbegrenzt
ISDN 576
DQDB
HIPPI
ATM 4500, s. u
ARCNET
802.11 2312 (WiFi)
Maximale Paketgröße eines Protokolls der Vermittlungsschicht
  • Schicht 3 des OSI-Modells
  • gemessen in Oktetten
  • welche ohne Fragmentierung in den Rahmen (engl. "Frames") eines Netzes der Sicherungsschicht (Schicht 2) übertragen werden kann
  • Diese Paketgröße passt also in die Nutzlast (Payload) des Protokolls der Sicherungsschicht
  • Die maximale Größe der Nutzlast der Sicherungsschicht wird auch oft als MTU der Sicherungsschicht (engl. 'link MTU') bezeichnet
Die maximale Größe eines Rahmens der Sicherungsschicht lässt sich so berechnen
Maximale Rahmengröße = Größte MTU aller benutzten Protokolle der Vermittlungsschicht + Größe der Sicherungsschichtheader
Hardware und Technik
  • Die MTU wird durch Einstellungen im Rahmen der Möglichkeiten der verwendeten Hardware und Technik bestimmt
  • Sie kann auf derselben Schnittstelle unterschiedliche Werte für unterschiedliche Protokolle der Vermittlungsschicht (z. B. IPv4 oder IPv6) annehmen
  • Alle an einem Schicht-2-Netz beteiligten Schnittstellen, welche Protokolle höherer Schichten verarbeiten, müssen auf denselben Wert für die jeweiligen Schicht-3-Protokolle eingestellt werden

Terminologie

  • Im OSI-Modell spricht man auf der Vermittlungsschicht von einem Paket (engl. 'packet'), während man auf der Sicherungsschicht von einem Rahmen (engl. 'frame') spricht
  • Die Terminologie, welche das OSI-Modell für die Einheiten auf den verschiedenen OSI-Modellschichten verwendet, hat zu einiger Verwirrung um den Begriff der MTU geführt

Abweichende Verwendung

Abweichende Verwendung des Begriffs

Cisco und Juniper

Verwenden den Begriff MTU in ihrer Konfigurationssyntax als maximale Rahmen- bzw. Paketgröße der zu konfigurierenden Netzwerkschicht

Folgende Einstellungen entsprechen einander
  • Bei beiden Herstellern bedeutet das erste Auftauchen des Begriffes die maximale Ethernet Rahmengröße und nicht die maximale Größe der Nutzlast (Maximum Segment Size)
  • diese muss folglich einige Byte größer gewählt werden als die dann folgenden Einstellungen für die verschiedenen Schicht-3 Protokolle
Paket- und Rahmengröße
  • Unter der „packet size“ (Paketgröße) wird fälschlicherweise teils die „frame size“ (Rahmengröße) verstanden, jedoch stellt die obige Definition (siehe RFC 1122 und RFC 791) dies eindeutig klar
  • Ein Spezialfall liegt vor, wenn ein Schicht-2-Protokoll über ein anderes Schicht-2-Protokoll getunnelt wird, denn dann nennt man auch die Nutzlast selbst "Rahmen" (engl. 'frame')

Path MTU (PMTU)

Maximale Paketgröße, die entlang der gesamten Wegstrecke übertragen werden kann, ohne einer Fragmentierung zu unterliegen
  • Sie ist die kleinsten MTU aller Schicht-2-Teilstücke im Pfad
  • Die PMTU kann automatisch durch PMTU Discovery (PMTUD) ermittelt werden
Beispiel Brief
  • Das Konzept der MTU auf die Post adaptiert ist verständlicher
  • Eine MTU 50 g heißt, dass man max. 50 g Inhalt (entspricht der Packet Size) in den Brief einpacken kann
  • Der Brief insgesamt kann selbst aber schwerer als 50 g sein, da im Normalfall noch ein Briefumschlag z.B. 4 g und eine Briefmarke 0,3 g hinzukommt
  • Bezahlt und verschickt wird der ganze Brief von 54,3 g Masse entsprechend der Frame Size

Beispiel Ethernet

Ein Ethernet Frame besteht aus zwei Teilen
dem „Header“, in dem Quell- und Zieladressen und andere wichtige Parameter für den Versand kodiert sind, und der Nutzlast, deren Größe durch die MTU bestimmt ist
In diesem Versuch ist die Größe der MTU mit 1500 Byte vorgegeben
  • Mit Hilfe des ping-Programmes wird ein „Frame“ erzeugt, der dann im Netzwerk über das Ethernet-Protokoll versendet wird
  • Die Verwendung des Begriffes Nutzlast ist hier mehrdeutig, da im OSI-Modell die verschiedenen Protokolle ineinander eingepackt (gekapselt) werden
  • Der im Versuch verwendete Linux-Befehl ping -s 1472 10.0.0.1 (Windows-Befehl ping -l 1472 10.0.0.1) sendet dann ein ICMP-Paket mit der Nutzlast von 1472 Bytes an die IP-Adresse 10.0.0.1
# ping -f -s 1472 10.0.0.1
1472 bytes Nutzlast des ICMP-Protokolles (Vermittlungsschicht)
+ 8 bytes ICMP-Header (Vermittlungsschicht)
+ 20 bytes IPv4-Header (Vermittlungsschicht)
-------------
= 1500 bytes (Nutzlast von Ethernet)
+ 14 bytes (Header der Sicherungsschicht)
+ 4 bytes (Frame Check Sequence)
-------------
= 1518 bytes (kompletter Ethernet Frame)
Mit einem Sniffer wie z. B. Wireshark wird als Ethernet Header nur die Größe von 14 Byte angezeigt
  • Hierzu kommt noch die 4 Byte große Frame Check Sequence am Ende des Frames
  • Falls VLANs verwendet werden, besteht der Header der Sicherungsschicht aus 18 Byte und der gesamte Ethernet Frame kann eine Größe von bis zu 1522 Byte annehmen
  • Würde IPv6 verwendet, änderte sich obige Berechnung dahingehend, dass der IPv6-Header der Vermittlungsschicht 40 statt 20 Byte beträgt und damit statt 1472 Byte ICMP-Nutzlast nur 1452 Byte möglich wären
Zum Prüfen der MTU eines Pfades ist es hilfreich, dem ping-Programm vorzugeben, das „don’t fragment (DF) bit“ für die Testpakete im IPv4-Header zu setzen (für Linux z. B. ping -M do -s 1472 10.0.0.1, für Windows
ping -l 1472 -f 10.0.0.1 ), denn dann erhält man eine Nachricht, falls die MTU überschritten wird
  • Leicht sichtbar machen lässt sich die Path MTU mit dem Programm tracepath für IPv4 bzw. tracepath6 für IPv6

Beispiel Ethernet

Ethernetrahmen bestehen aus zwei Teilen
  • dem „Header“, in dem Quell- und Zieladressen und andere wichtige Parameter für den Versand kodiert sind, und der Nutzlast, deren Größe durch die MTU bestimmt ist
  • In diesem Versuch ist die Größe der MTU mit 1500 Byte vorgegeben
  • Mit Hilfe des ping-Programmes wird ein „Frame“ erzeugt, der dann im Netzwerk über das Ethernet-Protokoll versendet wird
  • Die Verwendung des Begriffes Nutzlast ist hier mehrdeutig, da im OSI-Modell die verschiedenen Protokolle ineinander eingepackt (gekapselt) werden
ping -s 1472 10.0.0.1 (Windows-Befehl ping -l 1472 10.0.0.1)
  • sendet ein ICMP-Paket mit der Nutzlast von 1472 Bytes an die IP-Adresse 10.0.0.1
ping -f -l 1472 10.0.0.1
1472 bytes Nutzlast des ICMP-Protokolles (Transportschicht)
+ 8 bytes ICMP-Header (Transportschicht)
+ 20 bytes IPv4-Header (der Vermittlungsschicht)
-------------
= 1500 bytes (Nutzlast von Ethernet)
+ 14 bytes (Header der Sicherungsschicht)
+ 4 bytes (Frame Check Sequence)
-------------
= 1518 bytes (kompletter Ethernetrahmen)
Mit einem Sniffer (wie Wireshark)
  • wird als Ethernet Header nur die Größe von 14 Byte angezeigt
  • Hierzu kommt noch die 4 Byte große Frame Check Sequence am Ende des Frames
Falls VLANs verwendet werden
  • besteht der Header der Sicherungsschicht aus 18 Byte
  • der gesamte Ethernetrahmen kann eine Größe von bis zu 1522 Byte annehmen
Würde IPv6 verwendet
  • änderte sich obige Berechnung dahingehend, dass der IPv6-Header der Vermittlungsschicht 40 statt 20 Byte beträgt und damit statt 1472 Byte ICMP-Nutzlast nur 1452 Byte möglich wären
  • Oft ist es hilfreich dem ping-Programm vorzugeben das „don’t fragment (DF) bit“ für die Testpakete im IPv4-Header zu setzen

für Linux z. B  ping -M do -s 1472 10.0.0.1

für Windows

ping -l 1472 -f 10.0.0.1
  • denn dann erhält man eine Nachricht, falls die MTU überschritten wird
  • Leicht sichtbar machen lässt sich die Path MTU mit dem Programm tracepath für IPv4 bzw. tracepath6 für IPv6

Jumbo Frames für Gigabit Ethernet

Jumbo Frames können deutlich mehr als 1518 Oktette beinhalten
  • und damit ist es möglich, größere Pakete unfragmentiert zu übertragen
Positiv
  • wiegt, dass der Protokoll-Overhead bei der Verwendung von Jumbo Frames reduziert werden kann und Router weniger Pakete behandeln müssen
Allerdings
  • ist die Terminologie bzgl. MTU derart uneinheitlich unter den Herstellern, dass es in der Praxis schwierig ist, von den Standardeinstellungen abzuweichen
Jumbo Frames sind nicht im IEEE-802.3-Standard spezifiziert
  • trotzdem unterstützen die meisten Hersteller von Gigabit Ethernet Switches und Routern MTUs bis 9000 Oktette
Quasistandard eine Path MTU um ca. 1500 Byte
  • So hat sich als Quasistandard eine Path MTU um ca. 1500 Byte im Internet eingebürgert, die durch das weit verbreitete Fast Ethernet sowieso meist nicht überschritten werden kann
Tunnelprotokolle
  • Mit dem Aufkommen von Internetzugängen, die auf Tunnelprotokollen basieren, zum Beispiel beim Verbindungsaufbau über das PPPoE-Protokoll hat die MTU an Bedeutung gewonnen
  • Obwohl die PMTUD in diesem Fall dafür sorgen soll, dass die Kommunikation trotz der durch den Tunnel abgesenkten MTU möglich ist, gibt es immer wieder fehlkonfigurierte Firewalls, die durch Verwerfen von ICMP-Steuerpaketen die PMTUD stören
  • Auch große Websites sind oft von diesem Konfigurationsfehler betroffen, sodass die Nutzer von getunnelten Zugängen die MTU ihrer Geräte verkleinern müssen, um auch mit diesen Sites kommunizieren zu können

Optimale MTU

Diskussionen über die optimale MTU
Einfache Optimierung
  • So groß wie möglich, ohne dass Probleme auftreten
Komplexe Optimierung
  • so viel kleiner als o. g. Maximum, dass der Verschnitt der Transportzellen der unter der DSL-Schicht liegenden ATM-Transportschicht möglichst klein wird
Oder
Einfach probieren
  • Die MTU bei ATM (4500) ist nicht zu verwechseln mit der Zellengröße (53 Bytes, 48 davon Nutzlast)
  • Bei der Übertragung über einen ATM-Link werden IP-Pakete in Stücke zu je 48 Bytes zerlegt und für die Übertragung auf mehrere ATM-Zellen verteilt
  • Der Router am anderen Ende des ATM-Links sammelt diese Zellen und setzt das ursprüngliche IP-Paket wieder zusammen
  • Im Gegensatz dazu wird bei der IP-Fragmentierung das Paket nicht vom Router reassembliert, sondern erst von dem Host, für den das Paket bestimmt war
  • Probleme, die durch einen falschen MTU-Wert auftreten können, sind Webseiten, die gar nicht oder nur teilweise angezeigt werden

Paketgrößen

MTU und PMTU
  • Die Maximum Transmission Unit (MTU) darf in einem IPv6-Netzwerk 1280 Byte nicht unterschreiten
  • Somit unterschreitet auch die Path MTU (PMTU) diesen Wert nicht und es können Pakete bis zu dieser Größe garantiert ohne Fragmentierung übertragen werden
  • Minimale IPv6-Implementierungen verlassen sich auf diesen Fall
  • Ein IPv6-fähiger Rechner muss in der Lage sein, aus Fragmenten wieder zusammengesetzte Pakete mit einer Größe von mindestens 1500 Byte zu empfangen
  • Für IPv4 beträgt dieser Wert nur 576 Byte
  • Im anderen Extrem darf ein IPv6-Paket auch fragmentiert laut Payload-Length-Feld im IPv6-Header die Größe von 65.575 Byte einschließlich Kopfdaten nicht überschreiten, da dieses Feld 16 Bit lang ist (216 − 1 Byte zzgl. 40 Byte Kopfdaten)
Jumbograms
  • RFC 2675 stellt aber über eine Option des Hop-by-Hop Extension Headers die Möglichkeit zur Verfügung, Pakete mit Größen bis zu 4.294.967.335 Byte, sogenannte Jumbograms zu erzeugen
  • Dies erfordert allerdings Anpassungen in Protokollen höherer Schichten, wie z. B. TCP oder UDP, da diese oft auch nur 16 Bit für Größenfelder definieren, außerdem muss bei jedem Paket, welches einen Jumbogram beinhaltet, im IPv6-Header die Payload-Length auf 0 gesetzt werden


Anhang

Siehe auch

Links

RFC
RFC Titel
791 INTERNET PROTOCOL
879 The TCP Maximum Segment Size and Related Topics
1191 Path MTU Discovery
1981 Path MTU Discovery for IP version 6
2923 TCP Problems with Path MTU Discovery
Weblinks
  1. https://de.wikipedia.org/wiki/Maximum_Transmission_Unit
  2. Dr. TCP, eine Software zum Einstellen der MTU unter Windows, ursprünglich für DSL-Nutzer geschrieben
  3. MTU, eine weitere Software (Freeware) zum Einstellen der MTU unter Windows
  4. Analysing TCP Header Options – Section 6 – Ausführliche Erklärung der MTU und MSS