Zum Inhalt springen

Routing: Unterschied zwischen den Versionen

Aus Foxwiki
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
 
(124 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
'''topic''' - Kurzbeschreibung
'''Routing''' - [[Wegfindung]] und [[Vermittlung]] von [[Daten]] in [[paketorientiert]]en [[Netzwerk]]en
== Beschreibung ==
== Installation ==
== Syntax ==
=== Optionen ===
=== Parameter ===
=== Umgebungsvariablen ===
=== Exit-Status ===
== Anwendung ==
=== Fehlerbehebung ===
== Konfiguration ==
=== Dateien ===
<noinclude>
== Anhang ==
=== Siehe auch ===
{{Special:PrefixIndex/{{BASEPAGENAME}}}}
==== Sicherheit ====
==== Dokumentation ====
===== RFC =====
===== Man-Pages =====
===== Info-Pages =====
==== Links ====
===== Projekt =====
===== Weblinks =====


[[IPv4]]
[[IPv6]]
[[Internetprotokoll]
= TMP =
== Beschreibung ==
== Beschreibung ==
Der Router ist ein Netzwerkhardwaregerät, das dafür verantwortlich ist Pakete an ihre Ziele weiterzuleiten.
[[OSI-Layer 3]]
Router stellen eine Verbindung zwischen zwei oder mehr IP-Netzwerken oder mehr IP-Netzwerken oder Subnetzwerken her.
* [[Telekommunikation]]
Arbeitet auf der 3. Schicht im OSI-Modell (Vermittlungsschicht)


== Routing ==
; Festlegen von Wegen für Nachrichtenströme
* Routing ist das englische Wort für Vermittlung.
* Nachrichtenübermittlung in [[Rechnernetz]]en
* Es ist der Prozess, bei dem ein Pfad über ein oder mehrere Netzwerke ausgewählt wird, um Daten zu versenden.
In Netzwerken, die Pakete vermitteln, wählt das Routing die Pfade aus, auf denen die Internet-Protokoll-Pakete (IP-Pakete) von ihrem Ursprung zu ihrem Ziel gelangen.


== Wann wird ein Router benötigt?  ==
; Routing und Forwarding
* Sobald Daten mit einem anderen IP-Netzwerk ausgetauscht werden sollen, wird ein Router benötigt.
Häufig werden Routing und Forwarding unter dem Begriff "Routing" miteinander vermengt
Vorgang
* in diesem Fall bezeichnet Routing ganz allgemein die Übermittlung von Nachrichten über [[Nachrichtennetz]]e
* PC hat ein IP-Adresse + Subnetzmaske
* Im Unterschied zu Verteilern (Hubs und Switches) arbeitet das Routing ohne Einschränkungen auch in [[Vermaschtes Netz|vermaschten Netzen]]
* PC fuhrt mit IP + Subnetzmaske und Vergleich durch
* Ebenfalls und Vergleich von IP + Subnetz des Ziel-Computerts
* Unterschiedliches Ergebnis = Netzübergreifende Kommunikation = Router notwendig


== Beispiel ==
[[Paketvermittlung|Paketvermittelte]] Datennetze
'''Computer 1'''
* IP: 192.168.2.28
* Subnetzmaske: 255.255.255.224
AND Vergleich:
11000000.10101000.00000010.00011100
11111111.11111111.11111111.11100000
11000000.10101000.00000010.00000000 = > 192.168.2.0
 
'''Computer 2'''
* IP: 192.168.1.60
* SN: 255.255.255.192
AND Vergleich
11000000.10101000.00000010.00011100
11111111.11111111.11111111.11000000
11000000.10101000.00000001.00000000 = > 192.168.2.1
 
= > AND Vergleich fehlgeschlagen = > netzübergreifende Kommunikation = >Router benötigt


==Links==
{| class="wikitable options big"
# http://www.microhowto.info/howto/enable_forwarding_of_ipv4_packets.html
# https://unix.stackexchange.com/questions/527012/routing-problems-when-activating-ip-forwarding
# https://www.reddit.com/r/linuxquestions/comments/6vu4em/ip_forwarding_not_working/
# https://serverfault.com/questions/596641/linux-ip-forwarding-trouble
# https://lartc.org/howto/lartc.kernel.html
 
[[Kategorie:Router]]
 
== Installation ==
== Anwendungen ==
=== Fehlerbehebung ===
== Syntax ==
=== Optionen ===
=== Parameter ===
=== Umgebungsvariablen ===
=== Exit-Status ===
== Konfiguration ==
=== Dateien ===
== Sicherheit ==
== Dokumentation ==
=== RFC ===
=== Man-Pages ===
=== Info-Pages ===
== Siehe auch ==
== Links ==
=== Projekt-Homepage ===
=== Weblinks ===
=== Einzelnachweise ===
<references />
== Testfragen ==
<div class="toccolours mw-collapsible mw-collapsed">
''Testfrage 1''
<div class="mw-collapsible-content">'''Antwort1'''</div>
</div>
<div class="toccolours mw-collapsible mw-collapsed">
''Testfrage 2''
<div class="mw-collapsible-content">'''Antwort2'''</div>
</div>
<div class="toccolours mw-collapsible mw-collapsed">
''Testfrage 3''
<div class="mw-collapsible-content">'''Antwort3'''</div>
</div>
<div class="toccolours mw-collapsible mw-collapsed">
''Testfrage 4''
<div class="mw-collapsible-content">'''Antwort4'''</div>
</div>
<div class="toccolours mw-collapsible mw-collapsed">
''Testfrage 5''
<div class="mw-collapsible-content">'''Antwort5'''</div>
</div>
 
= TMP =
== Routing ==
* Routing ist das englische Wort für Vermittlung.
* Es ist der Prozess, bei dem ein Pfad über ein oder mehrere Netzwerke ausgewählt wird, um Daten zu versenden.
* In Netzwerken, die Pakete vermitteln, wählt das Routing die Pfade aus, auf denen die Internet-Protokoll-Pakete (IP-Pakete) von ihrem Ursprung zu ihrem Ziel gelangen.
 
=== Routing-Tabellen ===
Um zu entscheiden, wie Pakete entlang von Netzwerkpfaden zu routen sind, beziehen sich Router auf sogenannte interne Routing-Tabellen.
* Eine Routingtabelle gibt an, auf welchem Weg sich ein netzwerkfähiges Gerät mit anderen Netzwerken und deren Teilnehmern zu verbinden hat.
* Ein einzelner Eintrag in dieser Tabelle weist einem IP-Adressbereich eines Netzwerkziels eine Angabe zu, über welchen Router und welche Schnittstelle die Daten als Paketstrom zu leiten sind.
* Jeder Eintrag enthält zusätzlich auch einen Metrikwert.
* Anhand dieses Wertes kann der kürzeste Weg mit den wenigsten Weiterleitungen gewählt werden.
* Das Betriebssystem des Netzwerkgerätes erstellt eine Routingtabelle beim Booten und ergänzt sie danach laufend während des Betriebes.
* Dazu nutzt es die Informationen der erreichbaren Netze.
* Geräte können Netzwerkwege (Routen) auf 3 verschiedene Arten lernen und damit Einträge in der Routingtabelle erzeugen:
Direkt verbundene Netze werden automatisch in die Tabelle übernommen, sobald eine Schnittstelle (Interface) des Rechners mit einer IP-Adresse konfiguriert wird.
 
; Statisches Routing
Statische Routing-Tabellen werden manuell von einem Netzwerkadministrator eingerichtet.
* Dabei werden im Wesentlichen die Routen festgelegt, die Datenpakete über das Netzwerk nehmen.
* Diese sind aber nur bei geringer Anzahl von Geräten im Netzwerk sinnvoll, da man sonst schnell den Überblick verliert.
 
; Dynamisches Routing
Dynamische Routing-Tabellen werden automatisch aktualisiert.
* Sie verwenden verschiedene Routing-Protokolle, um die kürzesten und schnellsten Pfade zu ermitteln.
* Sie treffen diese Entscheidung auch abhängig davon, wie lange es dauert, bis die Pakete ihr Ziel erreichen.
* Dynamisches Routing erfordert mehr Rechenleistung, weshalb kleinere Netzwerke möglicherweise auf statisches Routing zurückgreifen.
* Aber für größere Netzwerke ist dynamisches Routing die effizientere Lösung.
 
= TMP =
== Funktionsweise ==
{| style="text-align:center;empty-cells:show;" cellspacing="0" cellpadding="1" border="0"
|-
|-
| style="border: 1px solid black; width: 3em;" | 7
! !! Beschreibung
| || || ||
| style="border: 1px solid black; width: 3em;" | 7
|-
|-
| style="border: 1px solid black;" | 6
| Routing || bestimmt den gesamten Weg eines Nachrichtenstroms durch das Netzwerk
| || || ||
| style="border: 1px solid black;" | 6
|-
|-
| style="border: 1px solid black;" | 5
| Forwarding || beschreibt den Entscheidungsprozess eines einzelnen Netzknotens, über welchen seiner Nachbarn er eine vorliegende Nachricht weiterleiten soll
| || || ||
|}
| style="border: 1px solid black;" | 5
 
; [[Vermittlungstechnik]]
Bezeichnet mit dem Begriff Verkehrslenkung (engl.: ''routing'') die Auswahl der Wegeabschnitte beim Aufbau von [[Nachrichtenverbindung]]en, die unter Berücksichtigung von Kriterien, wie bspw
* der kürzesten Entfernung, erfolgen kann
* Handelt es sich um eine [[Leitungsvermittlung|leitungsvermittelte]] Verbindung, wird ein [[Kanal (Informationstheorie)|Übertragungskanal]] für die gesamte Zeit der Verbindung ausgewählt, und alle Nachrichten werden über denselben Weg geleitet
* Handelt es sich dagegen um eine paketvermittelte [[Datenübertragung]], wird der Weg für jedes Paket von jedem [[Netzwerkknoten|Netzknoten]] neu bestimmt
 
{| class="wikitable options big"
|-
|-
| style="border: 1px solid black;" | 4
! Methode !! Beschreibung
| || || ||
| style="border: 1px solid black;" | 4
|-
|-
| style="border: 1px solid black;" | 3
| [[Statisches Routing]] ||
|
| colspan="2" style="border: 1px solid black; width: 3em;" | 3
|
| style="border: 1px solid black;" | 3
|-
|-
| style="border: 1px solid black;" | 2
| [[alternatives Routing]] ||
|
| style="border: 1px solid black;" | 2
| style="border: 1px solid black;" | 2
|
| style="border: 1px solid black;" | 2
|-
|-
| style="border: 1px solid black;" | 1
| [[adaptives Routing]]
| style="border-bottom: 3px solid black; width: 1em;" |
| style="border: 1px solid black;" | 1
| style="border: 1px solid black;" | 1
| style="border-bottom: 3px solid black; width: 1em;" |
| style="border: 1px solid black;" | 1
|}
|}


; Router arbeiten auf Schicht 3 (Vermittlungsschicht/{{lang|en|Network Layer}}) des [[OSI-Modell|OSI-Referenzmodells]].
; Routing-Prozess
* Ein Router besitzt mindestens eine ''Schnittstelle'' ({{enS|Interface}}), die [[Rechnernetz|Netze]] anbindet.
Pfad über ein oder mehrere Netzwerke ausgewählen wird, um Daten zu versenden
* Schnittstellen können auch virtuell sein, wenn diese z.&nbsp;B. zum Vermitteln von Daten zwischen virtuellen Netzen (VLAN) verwendet werden.
* In Netzwerken, die Pakete vermitteln, wählt das Routing die Pfade aus, auf denen die Internet-Protokoll-Pakete (IP-Pakete) von ihrem Ursprung zu ihrem Ziel gelangen
* Beim Eintreffen von [[Datenpaket]]en muss ein Router anhand der OSI-Schicht-3-Zieladresse (z.&nbsp;B. dem Netzanteil der IP-Adresse) den besten Weg zum Ziel und damit die passende Schnittstelle bestimmen, über welche die Daten weiterzuleiten sind.
 
* Dazu bedient er sich einer lokal vorhandenen [[Routingtabelle]], die angibt, über welchen Anschluss des Routers oder welchen lokalen oder entfernten Router welches Netz erreichbar ist.
== Routing von Paketen ==
Beim paketvermittelten Routing, wie es beispielsweise im [[Internet]] stattfindet, wird dafür gesorgt, dass logisch adressierte [[Datenpaket]]e aus dem Ursprungsnetz herauskommen und in Richtung ihres Zielnetzes weitergeleitet werden
* Routing ist die Basis des Internets - ohne Routing würde das Internet nicht existieren, und alle Netze wären autonom
* Die Datenpakete können dabei viele verschiedene Zwischennetze auf dem Weg zu ihrem Ziel passieren
* Im Internet wird das Routing (üblicherweise) auf der [[Internet Protocol|IP]]-Schicht durchgeführt
* Im ISO/[[OSI-Modell]] ist Routing eine der wesentlichen Aufgaben der dritten Schicht
 
[[Hub (Netzwerk)|Hubs]] und [[Switch (Computertechnik)|Switches]] leiten Daten nur im lokalen Netz weiter, wohingegen der Router auch benachbarte Netze kennt
* Dieser Artikel beschreibt Routing auf eine hardwareunabhängige Art
* Für Informationen über Router selbst siehe den [[Router]]-Artikel
 
Um zu wissen, wohin Pakete gesendet werden sollen, muss man die Struktur des Netzes kennen
* In kleinen Netzen kann das Routing sehr einfach sein und wird oft per Hand konfiguriert
* Man spricht dann auch von ''statischem Routing''
* Große Netze können eine komplexe [[Topologie (Rechnernetz)|Topologie]] haben, die sich möglicherweise häufig ändert, was unter anderem das Routing zu einer komplexen Angelegenheit macht
* Hier wird in der Regel ein ''dynamisches Routing'' angewandt


; Router können Wege auf drei verschiedene Arten lernen und mit diesem Wissen die Routingtabelleneinträge erzeugen.
Da Router die besten Routen im Verhältnis zur Anzahl der zu bewegenden Pakete nur sehr langsam bestimmen können, merken sie sich in einer oder mehreren ''[[Routingtabelle]]n'' die bestmöglichen, teilweise auch weitere Routen zu bestimmten Netzen und die dazugehörigen Routing-[[Metrik (Netzwerk)|Metriken]]
* direkt mit der Schnittstelle verbundene Netze: Sie werden automatisch in eine Routingtabelle übernommen, wenn ein Interface mit einer IP-Adresse konfiguriert wird und dieses Interface aktiv ist ("link up").
* Der bestmögliche Weg ist oftmals der kürzeste Weg; er kann zum Beispiel mit dem [[Algorithmus von Dijkstra]] gefunden werden
* statische Routen: Diese Wege werden durch einen Administrator eingetragen.
* Sie dienen zum einen der Sicherheit, sind andererseits nur verwaltbar, wenn ihre Zahl begrenzt ist.
* Die Skalierbarkeit ist für diese Methode ein limitierender Faktor.
* dynamische Routen: In diesem Fall lernen Router erreichbare Netze durch ein Routingprotokoll, das Informationen über das Netzwerk und seine Teilnehmer sammelt und an die Mitglieder verteilt.


; Routingtabelle
Basierend auf den Einträgen in der oder den Routingtabelle(n) berechnet ein Router eine sogenannte ''Forwardingtabelle''; sie enthält Einträge der Form ''Zieladressmuster''→''Ausgabeschnittstelle''
Die Routingtabelle ist in ihrer Funktion einem Adressbuch vergleichbar, in dem nachgeschlagen wird, ob ein Ziel-IP-Netz bekannt ist, also ob ein Weg zu diesem Netz existiert und, wenn ja, welche lokale Schnittstelle der Router zur Vermittlung der Daten zu diesem verwenden soll.
* In seiner Forwardingtabelle schlägt ein Router dann für jedes neu eingetroffene Paket nach, über welche Schnittstelle er das Paket weiterleiten muss
* Die Routing-Entscheidung erfolgt üblicherweise nach der Signifikanz der Einträge; spezifischere Einträge werden vor weniger spezifischen gewählt.
* Eine vorhandene Default-Route stellt dabei die am wenigsten spezifische Route dar, welche dann genutzt wird, wenn zuvor kein spezifischer Eintrag für das Ziel(-Netz) existiert.
* Bei einem Bezug der gesamten Internet-Routing-Tabelle im Rahmen des [[Autonomes System#Kunden, Peers, Provider|Inter-AS-Routing]] ist es üblich, keine Default-Route vorzuhalten.


; Policy-basiertes Routing
== Funktionsweise ==
Einige Router beherrschen [[Policy-basiertes Routing]] (für strategiebasiertes Routing).
{{:Routing/Funktionsweise}}
* Dabei wird die Routingentscheidung nicht notwendigerweise auf Basis der Zieladresse (OSI-Layer 3) getroffen, sondern es können auch andere Kriterien des Datenpaketes berücksichtigt werden.
* Hierzu zählen beispielsweise die Quell-IP-Adresse, Qualitätsanforderungen oder Parameter aus höheren Schichten wie [[Transmission Control Protocol|TCP]] oder [[User Datagram Protocol|UDP]].
* So können zum Beispiel Pakete, die [[Hypertext Transfer Protocol|HTTP]]-Inhalte (Web) transportieren, einen anderen Weg nehmen als Pakete mit [[Simple Mail Transfer Protocol|SMTP]]-Inhalten (Mail).


; Protokolle
== Beispiel ==
Router können nur für Routing geeignete Datenpakete, also von routingfähigen Protokollen, wie [[Internet Protocol|IP]] ([[IPv4]] oder [[IPv6]]) oder [[IPX/SPX]], verarbeiten.
{{:Routing/Beispiel}}
* Andere Protokolle, wie die ursprünglich von [[MS-DOS]] und [[MS-Windows]] benutzten [[NetBIOS]] und [[NetBEUI]], die nur für kleine Netze gedacht waren und von ihrem Design her nicht routingfähig sind, werden von einem Router standardmäßig nicht weitergeleitet.
* Es besteht jedoch die Möglichkeit, solche Daten über [[Tunneling|Tunnel]] und entsprechende Funktionen, wie [[Data Link Switching|Datalink Switching]] (DLSw), an entfernte Router zu vermitteln und dort dem Ziel zuzustellen.
* Pakete aus diesen Protokollfamilien werden in aller Regel durch Systeme, die auf [[OSI-Referenzmodell#Schicht 2 – Sicherungsschicht|Schicht 2]] arbeiten, also [[Bridge|Bridges]] oder [[Switch (Netzwerktechnik)|Switches]], verarbeitet.
* Professionelle Router können bei Bedarf diese Bridge-Funktionen wahrnehmen und werden [[Layer-3-Switch]] genannt.
* Als [[OSI-Referenzmodell#Schicht 3 – Vermittlungsschicht|Schicht-3]]-System enden am Router alle Schicht-2-Funktionen, darunter die [[Broadcastdomäne]].
* Das ist insbesondere in großen [[Local Area Network|lokalen Netzen]] wichtig, um das Broadcast-Aufkommen für die einzelnen Teilnehmer eines Subnetzes gering zu halten.
* Sollen allerdings Broadcast-basierte Dienste, wie beispielsweise [[DHCP]], über den Router hinweg funktionieren, muss der Router Funktionen bereitstellen, die diese Broadcasts empfangen, auswerten und gezielt einem anderen System zur Verarbeitung zuführen können ([[Dynamic Host Configuration Protocol#DHCP-Relay|Relay-Agent-Funktion]]).


; Multiprotokoll-Router
<noinclude>
Außerdem sind Ein- und Mehrprotokoll-Router (auch Multiprotokoll-Router) zu unterscheiden.
== Anhang ==
* Einprotokoll-Router sind nur für ein Netzwerkprotokoll wie IPv4 geeignet und können daher nur in [[Homogenität|homogenen]] Umgebungen eingesetzt werden.
=== Siehe auch ===
* Multiprotokoll-Router beherrschen den gleichzeitigen Umgang mit mehreren Protokollfamilien, wie [[DECnet]], IPX/SPX, [[Systems Network Architecture|SNA]], IP und anderen.
<div style="column-count:2">
* Heute dominieren IP-Router das Feld, da praktisch alle anderen Netzwerkprotokolle nur noch eine untergeordnete Bedeutung haben und, falls sie zum Einsatz kommen, oft auch gekapselt werden können ([[NetBIOS over TCP/IP]], IP-encapsulated IPX).
<categorytree hideroot=on mode="pages">{{BASEPAGENAME}}</categorytree>
* Früher hatten Mehrprotokoll-Router in größeren Umgebungen eine wesentliche Bedeutung, damals verwendeten viele Hersteller unterschiedliche Protokollfamilien, daher kam es unbedingt darauf an, dass vom Router mehrere Protokoll-Stacks unterstützt wurden.
</div>
* Multiprotokoll-Router finden sich fast ausschließlich in [[Weitverkehrsnetz|Weitverkehrs-]] oder ATM-Netzen.
----
{{Special:PrefixIndex/{{BASEPAGENAME}}/}}


; 'Gerouteten Protokolle' und 'Routing-Protokolle'
=== Links ===
Wichtig ist die Unterscheidung zwischen den ''gerouteten Protokollen'' (wie Internet Protocol oder [[Internetwork Packet Exchange|IPX]]) und ''Routing-Protokollen''.
==== Weblinks ====
* Routing-Protokolle dienen der Verwaltung des Routing-Vorgangs und der Kommunikation zwischen den Routern, die so ihre Routing-Tabellen austauschen (beispielsweise [[Border Gateway Protocol|BGP]], [[Routing Information Protocol|RIP]] oder [[OSPF]]).
# https://de.wikipedia.org/wiki/Routing
* Geroutete Protokolle hingegen sind die Protokolle, die den Datenpaketen, die der Router transportiert, zugrunde liegen.


[[Kategorie:Routing]]
[[Kategorie:IPv4/Routing]]
[[Kategorie:IPv6/Router]]
</noinclude>
</noinclude>

Aktuelle Version vom 19. Juli 2025, 11:17 Uhr

Routing - Wegfindung und Vermittlung von Daten in paketorientierten Netzwerken

Beschreibung

OSI-Layer 3

Festlegen von Wegen für Nachrichtenströme
Routing und Forwarding

Häufig werden Routing und Forwarding unter dem Begriff "Routing" miteinander vermengt

  • in diesem Fall bezeichnet Routing ganz allgemein die Übermittlung von Nachrichten über Nachrichtennetze
  • Im Unterschied zu Verteilern (Hubs und Switches) arbeitet das Routing ohne Einschränkungen auch in vermaschten Netzen

Paketvermittelte Datennetze

Beschreibung
Routing bestimmt den gesamten Weg eines Nachrichtenstroms durch das Netzwerk
Forwarding beschreibt den Entscheidungsprozess eines einzelnen Netzknotens, über welchen seiner Nachbarn er eine vorliegende Nachricht weiterleiten soll
Vermittlungstechnik

Bezeichnet mit dem Begriff Verkehrslenkung (engl.: routing) die Auswahl der Wegeabschnitte beim Aufbau von Nachrichtenverbindungen, die unter Berücksichtigung von Kriterien, wie bspw

  • der kürzesten Entfernung, erfolgen kann
  • Handelt es sich um eine leitungsvermittelte Verbindung, wird ein Übertragungskanal für die gesamte Zeit der Verbindung ausgewählt, und alle Nachrichten werden über denselben Weg geleitet
  • Handelt es sich dagegen um eine paketvermittelte Datenübertragung, wird der Weg für jedes Paket von jedem Netzknoten neu bestimmt
Methode Beschreibung
Statisches Routing
alternatives Routing
adaptives Routing
Routing-Prozess

Pfad über ein oder mehrere Netzwerke ausgewählen wird, um Daten zu versenden

  • In Netzwerken, die Pakete vermitteln, wählt das Routing die Pfade aus, auf denen die Internet-Protokoll-Pakete (IP-Pakete) von ihrem Ursprung zu ihrem Ziel gelangen

Routing von Paketen

Beim paketvermittelten Routing, wie es beispielsweise im Internet stattfindet, wird dafür gesorgt, dass logisch adressierte Datenpakete aus dem Ursprungsnetz herauskommen und in Richtung ihres Zielnetzes weitergeleitet werden

  • Routing ist die Basis des Internets - ohne Routing würde das Internet nicht existieren, und alle Netze wären autonom
  • Die Datenpakete können dabei viele verschiedene Zwischennetze auf dem Weg zu ihrem Ziel passieren
  • Im Internet wird das Routing (üblicherweise) auf der IP-Schicht durchgeführt
  • Im ISO/OSI-Modell ist Routing eine der wesentlichen Aufgaben der dritten Schicht

Hubs und Switches leiten Daten nur im lokalen Netz weiter, wohingegen der Router auch benachbarte Netze kennt

  • Dieser Artikel beschreibt Routing auf eine hardwareunabhängige Art
  • Für Informationen über Router selbst siehe den Router-Artikel

Um zu wissen, wohin Pakete gesendet werden sollen, muss man die Struktur des Netzes kennen

  • In kleinen Netzen kann das Routing sehr einfach sein und wird oft per Hand konfiguriert
  • Man spricht dann auch von statischem Routing
  • Große Netze können eine komplexe Topologie haben, die sich möglicherweise häufig ändert, was unter anderem das Routing zu einer komplexen Angelegenheit macht
  • Hier wird in der Regel ein dynamisches Routing angewandt

Da Router die besten Routen im Verhältnis zur Anzahl der zu bewegenden Pakete nur sehr langsam bestimmen können, merken sie sich in einer oder mehreren Routingtabellen die bestmöglichen, teilweise auch weitere Routen zu bestimmten Netzen und die dazugehörigen Routing-Metriken

  • Der bestmögliche Weg ist oftmals der kürzeste Weg; er kann zum Beispiel mit dem Algorithmus von Dijkstra gefunden werden

Basierend auf den Einträgen in der oder den Routingtabelle(n) berechnet ein Router eine sogenannte Forwardingtabelle; sie enthält Einträge der Form ZieladressmusterAusgabeschnittstelle

  • In seiner Forwardingtabelle schlägt ein Router dann für jedes neu eingetroffene Paket nach, über welche Schnittstelle er das Paket weiterleiten muss

Funktionsweise

Routing/Funktionsweise

Router

Router arbeiten auf Schicht 3
Sender Empfänger
7 Application < - - - - - - - - - - - - - - - - - - - - - - - - > 7 Application
6 Presentation‎ < - - - - - - - - - - - - - - - - - - - - - - - - > 6 Presentation‎
5 Session‎ < - - - - - - - - - - - - - - - - - - - - - - - - > 5 Session‎
4 Transport < - - - - - - - - - - - - - - - - - - - - - - - - > 4 Transport
3 Network‎ < - - > 3 Network‎ < - - > 3 Network‎
2 Data Link‎ < - - > 2 Data Link‎ 2 Data Link‎ < - - > 2 Data Link‎
1 Physical‎ < - - > 1 Physical‎ 1 Physical‎ < - - > 1 Physical‎
Übertragungsmedien Übertragungsmedien


Vermittlungsschicht/Network Layer des OSI-Referenzmodells

Ein Router besitzt mindestens eine Schnittstelle (Interface), die Netze anbindet.

  • Schnittstellen können auch virtuell sein, wenn diese beispielsweise zum Vermitteln von Daten zwischen virtuellen Netzen (VLAN) verwendet werden.
  • Beim Eintreffen von Datenpaketen muss ein Router anhand der OSI-Schicht-3-Zieladresse (beispielsweise dem Netzanteil der IP-Adresse) den besten Weg zum Ziel und damit die passende Schnittstelle bestimmen, über welche die Daten weiterzuleiten sind.
  • Dazu bedient er sich einer lokal vorhandenen Routingtabelle, die angibt, über welchen Anschluss des Routers oder welchen lokalen oder entfernten Router welches Netz erreichbar ist.
Routing eines HTTP-Pakets über drei Netze

Router können Wege auf drei verschiedene Arten lernen und mit diesem Wissen die Routingtabelleneinträge erzeugen.

  • direkt mit der Schnittstelle verbundene Netze: Sie werden automatisch in eine Routingtabelle übernommen, wenn ein Interface mit einer IP-Adresse konfiguriert wird und dieses Interface aktiv ist ("link up").
  • statische Routen: Diese Wege werden durch einen Administrator eingetragen.
  • Sie dienen zum einen der Sicherheit, sind andererseits nur verwaltbar, wenn ihre Zahl begrenzt ist.
  • Die Skalierbarkeit ist für diese Methode ein limitierender Faktor.
  • dynamische Routen: In diesem Fall lernen Router erreichbare Netze durch ein Routingprotokoll, das Informationen über das Netzwerk und seine Teilnehmer sammelt und an die Mitglieder verteilt.

Routingtabelle

Die Routingtabelle ist in ihrer Funktion einem Adressbuch vergleichbar, in dem nachgeschlagen wird, ob ein Ziel-IP-Netz bekannt ist, also ob ein Weg zu diesem Netz existiert und, wenn ja, welche lokale Schnittstelle der Router zur Vermittlung der Daten zu diesem verwenden soll.

  • Die Routing-Entscheidung erfolgt üblicherweise nach der Signifikanz der Einträge; spezifischere Einträge werden vor weniger spezifischen gewählt.
  • Eine vorhandene Default-Route stellt dabei die am wenigsten spezifische Route dar, welche dann genutzt wird, wenn zuvor kein spezifischer Eintrag für das Ziel(-Netz) existiert.
  • Bei einem Bezug der gesamten Internet-Routing-Tabelle im Rahmen des Inter-AS-Routing ist es üblich, keine Default-Route vorzuhalten.

Policy-basiertes Routing

Einige Router beherrschen Policy-basiertes Routing (für strategiebasiertes Routing).

  • Dabei wird die Routingentscheidung nicht notwendigerweise auf Basis der Zieladresse (OSI-Layer 3) getroffen, sondern es können auch andere Kriterien des Datenpaketes berücksichtigt werden.
  • Hierzu zählen beispielsweise die Quell-IP-Adresse, Qualitätsanforderungen oder Parameter aus höheren Schichten wie TCP oder UDP.
  • So können zum Beispiel Pakete, die HTTP-Inhalte (Web) transportieren, einen anderen Weg nehmen als Pakete mit SMTP-Inhalten (Mail).

Protokolle

Router können nur für Routing geeignete Datenpakete, also von routingfähigen Protokollen, wie IP (IPv4 oder IPv6) oder IPX/SPX, verarbeiten.

  • Andere Protokolle, wie die ursprünglich von MS-DOS und MS-Windows benutzten NetBIOS und NetBEUI, die nur für kleine Netze gedacht waren und von ihrem Design her nicht routingfähig sind, werden von einem Router standardmäßig nicht weitergeleitet.
  • Es besteht jedoch die Möglichkeit, solche Daten über Tunnel und entsprechende Funktionen, wie Datalink Switching (DLSw), an entfernte Router zu vermitteln und dort dem Ziel zuzustellen.
  • Pakete aus diesen Protokollfamilien werden in aller Regel durch Systeme, die auf Schicht 2 arbeiten, also Bridges oder Switches, verarbeitet.
  • Professionelle Router können bei Bedarf diese Bridge-Funktionen wahrnehmen und werden Layer-3-Switch genannt.
  • Als Schicht-3-System enden am Router alle Schicht-2-Funktionen, darunter die Broadcastdomäne.
  • Das ist insbesondere in großen lokalen Netzen wichtig, um das Broadcast-Aufkommen für die einzelnen Teilnehmer eines Subnetzes gering zu halten.
  • Sollen allerdings Broadcast-basierte Dienste, wie beispielsweise DHCP, über den Router hinweg funktionieren, muss der Router Funktionen bereitstellen, die diese Broadcasts empfangen, auswerten und gezielt einem anderen System zur Verarbeitung zuführen können (Relay-Agent-Funktion).

Multiprotokoll-Router

Außerdem sind Ein- und Mehrprotokoll-Router (auch Multiprotokoll-Router) zu unterscheiden.

  • Einprotokoll-Router sind nur für ein Netzwerkprotokoll wie IPv4 geeignet und können daher nur in homogenen Umgebungen eingesetzt werden.
  • Multiprotokoll-Router beherrschen den gleichzeitigen Umgang mit mehreren Protokollfamilien, wie DECnet, IPX/SPX, SNA, IP und anderen.
  • Heute dominieren IP-Router das Feld, da praktisch alle anderen Netzwerkprotokolle nur noch eine untergeordnete Bedeutung haben und, falls sie zum Einsatz kommen, oft auch gekapselt werden können (NetBIOS over TCP/IP, IP-encapsulated IPX).
  • Früher hatten Mehrprotokoll-Router in größeren Umgebungen eine wesentliche Bedeutung, damals verwendeten viele Hersteller unterschiedliche Protokollfamilien, daher kam es unbedingt darauf an, dass vom Router mehrere Protokoll-Stacks unterstützt wurden.
  • Multiprotokoll-Router finden sich fast ausschließlich in Weitverkehrs- oder ATM-Netzen.

Gerouteten Protokolle und Routing-Protokolle

Routing-Protokolle

  • Verwaltung des Routing-Vorgangs
  • Kommunikation zwischen den Routern
  • Routing-Tabellen austauschen
  • BGP, RIP, OSPF, …

Geroutete Protokolle

  • Protokolle, die den Datenpaketen, die der Router transportiert, zugrunde liegen
  • Internet Protocol, …


Beispiel

Routing/Beispiel

Beispiele

Wann wird ein Router benötigt?
  • Sobald Daten mit einem anderen IP-Netzwerk ausgetauscht werden sollen, wird ein Router benötigt.
Vorgang
  • PC hat ein IP-Adresse + Subnetzmaske
  • PC fuhrt mit IP + Subnetzmaske und Vergleich durch
  • Ebenfalls und Vergleich von IP + Subnetz des Ziel-Computerts
  • Unterschiedliches Ergebnis = Netzübergreifende Kommunikation = Router notwendig

Computer 1

  • IP: 192.168.2.28
  • Subnetzmaske: 255.255.255.224

AND Vergleich:

11000000.10101000.00000010.00011100
11111111.11111111.11111111.11100000
11000000.10101000.00000010.00000000 = > 192.168.2.0

Computer 2

  • IP: 192.168.1.60
  • SN: 255.255.255.192

AND Vergleich

11000000.10101000.00000010.00011100
11111111.11111111.11111111.11000000
11000000.10101000.00000001.00000000 = > 192.168.2.1
= > AND Vergleich fehlgeschlagen = > netzübergreifende Kommunikation = >Router benötigt



Anhang

Siehe auch


Links

Weblinks

  1. https://de.wikipedia.org/wiki/Routing