Internet Protocol: Unterschied zwischen den Versionen

Aus Foxwiki
Zeile 88: Zeile 88:
| style="padding:0.049cm;" | [https://tools.ietf.org/html/rfc8200 RFC 8200] (IPv6, 2017)[https://tools.ietf.org/html/rfc791 RFC 791] (IPv4, 1981)  
| style="padding:0.049cm;" | [https://tools.ietf.org/html/rfc8200 RFC 8200] (IPv6, 2017)[https://tools.ietf.org/html/rfc791 RFC 791] (IPv4, 1981)  
|-
|-
|}
{| class="wikitable float-right"
|-
! colspan="2" style="background: #C0C0FF; font-size: larger;"| IP (Internet Protocol)
|-
! Familie:
| [[Internetprotokollfamilie]]
|-
! Einsatzgebiet:
| Datenpaketversendung<br />sowohl lokal als auch<br />weltweit über verschiedene<br />Netzwerke
|-
|colspan="2"|
{{Netzwerk-TCP-IP-Vermittlungsprotokoll|IP ([[IPv4]], [[IPv6]])|title=IP|2=class="center"}}
|-
! Standards:
| RFC 8200 (IPv6, 2017)<br />RFC 791 (IPv4, 1981)
|}
|}



Version vom 9. Dezember 2022, 14:45 Uhr

topic kurze Beschreibung

Beschreibung

Installation

Anwendungen

Fehlerbehebung

Syntax

Optionen

Parameter

Umgebungsvariablen

Exit-Status

Konfiguration

Dateien

Sicherheit

Dokumentation

RFC

Man-Pages

Info-Pages

Siehe auch

Links

Projekt-Homepage

Weblinks

Einzelnachweise

Testfragen

Testfrage 1

Antwort1

Testfrage 2

Antwort2

Testfrage 3

Antwort3

Testfrage 4

Antwort4

Testfrage 5

Antwort5


Wikipedia

IP (Internet Protocol)
Familie: Internetprotokollfamilie
Einsatzgebiet: Datenpaketversendungsowohl lokal als auchweltweit über verschiedeneNetzwerke

IP im TCP/IP-Protokollstapel:

Anwendung HTTP IMAP SMTP DNS
Transport TCP UDP
Internet IP (IPv4, IPv6)
Netzzugang Ethernet TokenBus TokenRing FDDI
Standards: RFC 8200 (IPv6, 2017)RFC 791 (IPv4, 1981)

Das Internet Protocol (IP) ist ein in Computernetzen weit verbreitetes Netzwerkprotokoll und stellt durch seine Funktion die Grundlage des Internets dar.

  • Das IP ist die Implementierung der Internetschicht des TCP/IP-Modells bzw. der Vermittlungsschicht (engl. Network Layer) des OSI-Modells.[1] IP ist ein verbindungsloses Protokoll, das heißt bei den Kommunikationspartnern wird kein Zustand etabliert.

Eigenschaften und Funktionen

Das IP bildet die erste vom Übertragungsmedium unabhängige Schicht der Internetprotokollfamilie.

  • Das bedeutet, dass mittels IP-Adresse und Subnetzmaske (subnet mask) für IPv4, bzw. Präfixlänge bei IPv6, Computer innerhalb eines Netzwerkes in logische Einheiten, sogenannte Subnetze, gruppiert werden können.
  • Auf dieser Basis ist es möglich, Computer in größeren Netzwerken zu adressieren und ihnen IP-Pakete zu senden, da logische Adressierung die Grundlage für Routing (Wegewahl und Weiterleitung von Netzwerkpaketen) ist.

Adressvergabe

Öffentliche IP-Adressen müssen in der Regel weltweit eindeutig zugeordnet werden können, daher ist deren Vergabe durch die Internet Assigned Numbers Authority (IANA) geregelt.

Vorlage:Hauptartikel Bei IPv4 ist der zu vergebende Adressraum weitgehend aufgebraucht.

  • Die IANA hat im Februar 2011 die letzten Adressblöcke an die RIRs vergeben.

Versionsgeschichte

Im Mai 1974 veröffentlichten Vint Cerf und Bob Kahn in einer Forschungsarbeit ein Netzwerkprotokoll zur übergreifenden Kommunikation zwischen unterschiedlichen paketvermittelten Netzen.

  • In dem Modell führen Endgeräte () ein „Übertragungskontrollprogramm“ ( – TCP) aus, das die Übermittlung eines kontinuierlichen Datenstroms zwischen Prozessen sicherstellt. Gateways übernehmen die Umformung von Paketen an Netzwerkgrenzen.[2]

Die erste vollständige Protokollspezifikation erschien mit RFC 675 im Dezember 1974.[3] Das monolithische Übertragungskontrollprogramm wurde später in eine Modularchitektur geteilt, die aus dem Internetprotokoll () zur Host-zu-Host-Kommunikation und dem Übertragungskontrollprotokoll ( – TCP) zur Prozess-zu-Prozess-Kommunikation bestand.

  • Das Modell wurde bekannt als TCP/IP-Referenzmodell.

Beide Protokolle wurden mehrfach überarbeitet, ehe sie zum praktischen Einsatz kamen.

  • Neben der finalen Bezeichnung als „Internet Protocol“ wurde in Entwürfen auch „Internetwork Protocol“,[4][5]Internet Datagram Protocol[6] oder „DoD Standard Internet Protocol[7][8] verwendet.
  • Bei größeren Änderungen des IP-Headers wurde eine im Header enthaltene Versionsnummer hochgezählt.
  • Bei der Einführung von TCP/IP im ARPANET am 1. Januar 1983[9] trugen IP-Pakete daher die Versionsnummer 4.
  • Vorherige Versionen waren nicht verbreitet.

Im ersten Protokollentwurf war ein Adressierungsschema variabler Länge vorgesehen, bestehend aus einer mindestens 4 Bit langen Netzadresse, einer 16 Bit langen Hostadresse und einer 24 Bit langen Portnummer.[3] Später wurden IP-Adressen auf 32 Bit festgelegt, bestehend aus 8 Bit Netzadresse und 24 Bit Hostadresse.[8] Die Portnummer wurde zu TCP verschoben und auf 16 Bit gekürzt.

Mit der sich abzeichnenden Knappheit von IP-Adressen begann Anfang der 1990er Jahre die Entwicklung eines Nachfolgeprotokolls.

  • Zur Unterscheidung wurde das etablierte Internetprotokoll entsprechend der Versionsnummer im IP-Header als IPv4 und das neue Internetprotokoll als IPv6 bezeichnet.
  • Die wichtigste Neuerung ist der erheblich größere Adressraum: gegenüber den 32-Bit-Adressen bei IPv4 (ergibt ca. 4 Milliarden, oder 4,3·109 Adressen) verwendet IPv6 128-Bit-Adressen (ergibt ca. 340 Sextillionen, oder 3,4·1038 Adressen).

Vorlage:AnkerDie Versionsnummer 5 war durch das experimentelle Internet Stream Protocol belegt,[11] das nicht als Nachfolger, sondern als Ergänzung parallel zum Internetprotokoll gedacht war.

  • Das Internet Stream Protocol wurde später aufgegeben ohne eine nennenswerte Verbreitung erlangt zu haben.
  • Die Versionsnummern 7 bis 9 wurden für verschiedene Vorschläge eines IPv4-Nachfolgers verwendet, die jedoch zugunsten von IPv6 aufgegeben wurden.[12]

Die Verbreitung von IPv6 nimmt langsam zu, liegt jedoch hinter der Verbreitung von IPv4.

Zuverlässigkeit

Die Designgrundsätze der Internetprotokolle nehmen an, dass die Netzinfrastruktur an jedem einzelnen Netzelement oder Übertragungsmedium von Natur aus unzuverlässig ist.

  • Auch setzen diese voraus, dass sich die Infrastruktur im Bezug auf Verfügbarkeit von Verbindungen und Knoten dynamisch verhält.
  • Um jedoch die Netzinfrastruktur aufrechtzuerhalten, wird das Hauptaugenmerk der Datenübertragung vorsätzlich größtenteils auf den Endknoten jeder einzelnen Datenübermittlung gelegt.
  • Router im Übertragungspfad schicken Datenpakete nur zu direkt erreichbaren und bekannten Übergängen, die die für den Bestimmungsort festgelegten Adressen vom Routenplanungspräfix vergleichen.

Demzufolge stellen diese Internetprotokolle nur beste Übergänge zur Verfügung, wodurch diese Dienste als unzuverlässig charakterisiert werden.

  • Das IP ist verbindungslos, jedes einzelne Datenpaket wird unabhängig behandelt.
  • Da jeder einzelne Übermittlungsweg eines Datenpaketes neu definiert wird (dynamisch), ist es möglich, dass die Pakete auf verschiedenen Pfaden zu ihrem Bestimmungsort gesendet werden.

Die Internetprotokoll-Version 4 (IPv4) stellt den benötigten Schutz zur Verfügung, um sicherzustellen, dass der Protokollkopf jedes Datenpaketes fehlerfrei ist.[13] Ein Routenplanungsknoten berechnet eine Prüfsumme für den Paketkopf.

  • Wenn die Prüfsumme ungültig ist, verwirft der Routenplanungsknoten das Paket.
  • Der Routenplanungsknoten muss keinen Endknoten bekannt geben, obwohl das Internetkontrollnachrichtenprotokoll (ICMP) solche Ankündigungen erlaubt.
  • Im Gegensatz dazu verfügt die Internetprotokoll-Version 6 (IPv6) über keine Prüfsumme,[13] was zu einer schnelleren Verarbeitung während der Routenplanung führt.

Alle Fehlerquellen im Übertragungsnetz müssen entdeckt und mit Hilfe der Übertragung auf Endknoten ersetzt werden.

  • Die oberen Schicht-Protokolle der Internetprotokoll-Familie sind dafür verantwortlich, Zuverlässigkeitsprobleme aufzulösen.
  • Zum Beispiel kann ein Host Daten zurückhalten und eine Richtigstellung durchführen, bevor die Daten an den jeweiligen Empfänger geliefert werden.

Linkkapazität und Leistungsfähigkeit

Selbst wenn der Übermittlungspfad verfügbar und zuverlässig ist, besteht wegen der dynamischen Natur und der Heterogenität des Internets und seiner Bestandteile keine Garantie, dass auch tatsächlich jeder dieser einzelnen Pfade fähig ist, eine Datenübermittlung durchzuführen.

  • Zum Beispiel stellt die erlaubte Übermittlungsgröße der jeweiligen Datenpakete eine technische Einschränkung dar.
  • Jede Anwendung muss versichern, dass richtige Übertragungseigenschaften verwendet werden.

Ein Teil dieser Verantwortung liegt auch in den oberen Schicht-Protokollen.

  • IPv6 verwendet die Fähigkeit, die maximale Übertragungseinheitsgröße einer lokalen Verbindung, sowie den dafür komplett geplanten Pfad zum Bestimmungsort zu untersuchen.
  • Die IPv4-Zwischennetzwerkanschlussschicht hat die Fähigkeit ursprünglich, große Datenpakete automatisch in kleinere Einheiten für die Übertragung zu zerlegen.

Das Transmission Control Protocol (TCP) ist ein Beispiel eines Protokolls, das seine Segment-Größe reguliert, um kleiner als der maximal erlaubte Durchfluss, die Maximum Transmission Unit (MTU), zu sein.

Siehe auch

verwandte Protokolle

Weblinks

Einzelnachweise