Ethernet/Typ

Aus Foxwiki

Ethernet-Medientypen

Die verschiedenen Ethernet-Varianten (PHYs) unterscheiden sich in Übertragungsrate, den verwendeten Kabeltypen und der Leitungscodierung.
  • Der Protokollstack arbeitet bei den meisten der folgenden Typen identisch.
Eine erfolgreiche Verbindung zwischen zwei Anschlüssen (Ports) wird als Link bezeichnet.
  • Einige Varianten teilen den Datenstrom in mehrere Kanäle (Lanes) auf, um Datenrate und Frequenzen auf das Medium anzupassen.
  • Die jeweilige Reichweite ist die maximal mögliche Länge eines Links innerhalb der Spezifikation.
  • Bei einer höheren Qualität des Mediums – insbesondere bei Glasfaser – können auch deutlich längere Links stabil funktionieren.
Die Varianten beziehen ihre Namen aus den verwendeten Spezifikationen
  • 10, 100, 1000, 10G, … – die nominelle, auf der Bitebene nutzbare Geschwindigkeit (kein Suffix = Megabit/s, G = Gigabit/s); die leitungskodierten Sublayer haben üblicherweise eine höhere Datenrate
  • BASE, BROAD, PASSBasisband-, Breitband- oder Passband-Signalisierung
  • -T, -S, -L, -C, -K, … – Medium: T = Twisted-Pair-Kabel, S = (short) kurze Wellenlänge ca. 850 nm über Multimode-Faser, L = (long) lange Wellenlänge ca. 1300 nm, hauptsächlich Singlemode-Faser, E/Z = extralange Wellenlänge ca. 1500 nm (Singlemode), B = bidirektionale Faser mit WDM (meist Singlemode), P = Passive Optical Network, C = (copper) Twinaxialkabel, K = Backplane, 2/5 = Koaxialkabel mit 185/500 m Reichweite
  • X, RPCS-Kodierung (generationsabhängig), zum Beispiel X für 8b/10b Blockkodierung (4B5B bei Fast Ethernet), R für große Blöcke (64b/66b)
  • 1, 2, 4, 10 – Anzahl der Lanes pro Link oder Reichweite bei 100/1000 Mbit/s WAN PHYs

Bei 10-Mbit/s-Ethernet verwenden alle Varianten durchgehend Manchester-Code, keine Kodierung ist angegeben.

  • Die meisten Twisted-Pair-Varianten verwenden spezielle Kodierungen, nur -T wird angegeben.
Die folgenden Abschnitte geben einen kurzen Überblick über alle offiziellen Ethernet-Medientypen
  • Zusätzlich zu diesen offiziellen Standards haben viele Hersteller proprietäre Medientypen entwickelt, häufig, um mit Lichtwellenleitern höhere Reichweiten zu erzielen.

Frühe Ethernet-Varianten

Ethernet/Medien/Typen/Frühe Ethernet-Varianten

10-Mbit/s-Ethernet

Ethernet/Medien/Typen/10-Mbit/s-Ethernet

100-Mbit/s-Ethernet

Ethernet/Medien/Typen/100-Mbit/s-Ethernet

Gigabit-Ethernet

Bei 1000-Mbit/s-Ethernet (Gigabit-Ethernet; kurz: GbE oder GigE) kommen im Wesentlichen zwei verschiedene Kodiervarianten zum Einsatz.

  • Bei 1000BASE-X (IEEE 802.3 Clause 36) wird der Datenstrom in 8-Bit breite Einheiten zerlegt und mit dem 8b10b-Code auf eine Symbolrate von 1250 MBaud gebracht.
  • Damit wird ein kontinuierlicher, gleichspannungsfreier Datenstrom erzeugt, der bei 1000BASE-CX über einen Transformator auf einem verdrillten Aderpaar zum Empfänger fließt oder bei 1000BASE-SX/LX/ZX die optische Trägerwelle moduliert.
  • Bei 1000BASE-T hingegen wird der Datenstrom in vier Teilströme unterteilt, die jeweils mit PAM-5 und Trellis-Codierung in ihrer Bandbreite geformt und über die vier Aderpaare gleichzeitig gesendet und empfangen werden.

Die beim frühen Fast Ethernet noch weit verbreiteten Repeater Hubs wurden für Gigabit Ethernet anfangs zwar noch im Standard definiert, allerdings wurden keine Hubs hergestellt, so dass der Standard 2007 eingefroren wurde und GbE real ausschließlich über Switches im Vollduplex-Modus existiert.

Kupfer

  • 1000BASE-T, IEEE 802.3 Clause 40 (früher IEEE 802.3ab) – 1 Gbit/s über Kupferkabel ab Cat-5 UTP-Kabel oder besser Cat-5e oder Cat-6 (Verkabelung nach TIA-568A/B).
  • Die maximale Länge eines Segments beträgt wie bei 10BASE-T und 100BASE-TX 100 Meter.
  • Wichtige Merkmale des Verfahrens sind:
Im Grundprinzip ist 1000BASE-T eine „hochskalierte“ Variante des seinerzeit erfolglosen 100BASE-T2, nur dass es doppelt so viele Aderpaare (nämlich alle vier Paare einer typischen Cat-5-Installation) verwendet und die gegenüber Cat-3 größere verfügbare Bandbreite eines Cat-5-Kabels ausnutzt.
  • 1000BASE-TX, 1000BASE-T2/4 (nicht in IEEE 802.3 standardisiert) – Erfolglose Versuche verschiedener Interessengruppen, die aufwändigen Modulier/Demodulier- und Echokompensationsschaltungen von 1000BASE-T durch eine höhere Signalisierungsrate auszugleichen.
  • Statt Klasse-D-Verkabelung bei 1000BASE-T benötigen diese Übertragungsverfahren im Gegenzug Installationen nach Klasse E und Klasse F.
  • Das Hauptargument für die Entstehung dieser Übertragungsverfahren, die hohen Kosten für Netzwerkanschlüsse mit 1000BASE-T-Unterstützung, ist längst entkräftet.
1000BASE-SX Transceiver in SFP-Ausführung
  • 1000BASE-CX, IEEE 802.3 Clause 39 – Als Übertragungsmedium werden zwei Aderpaare eines Shielded-Twisted-Pair-Kabels (STP) mit einer maximalen Kabellänge von 25 m und einer Impedanz von 150 Ohm eingesetzt.
  • Der Anschluss erfolgt über 8P8C-Modularstecker/-buchsen (meist als „RJ45“/„RJ-45“ bezeichnet) oder DE-9 in einer Sterntopologie.
  • Im Vergleich zu 1000BASE-T werden bei 1000BASE-CX deutlich höhere Anforderungen an das Kabel gestellt.
  • So ist etwa die verwendete Bandbreite um den Faktor 10 höher (625 MHz gegenüber 62,5 MHz).
  • Die Komponenten sind außerdem zueinander nicht kompatibel.
  • 1000Base-T1, IEEE 802.3bp spezifiziert 1Gbit/s über eine einzelne, verdrillte Zweidrahtleitung für Automobil- und Industrieanwendungen. 1000BASE-T1 enthält Kabelspezifikationen für eine Reichweite von 15 Metern (Typ A) oder 40 Metern (Typ B).
  • Die Übertragung erfolgt mit PAM-3 bei 750 MBd.

Glasfaser

  • 1000BASE-SX, 1000BASE-LX, IEEE 802.3 Clause 38 (früher IEEE 802.3z) – 1 Gbit/s über Glasfaser.
  • Die beiden Standards unterscheiden sich prinzipiell in der verwendeten Wellenlänge des optischen Infrarot-Lasers und der Art der Fasern: 1000BASE-SX verwendet kurzwelliges Licht mit 850 nm Wellenlänge und Multimode-Glasfasern, bei 1000BASE-LX strahlen die Laser langwelliges Licht mit 1310 nm Wellenlänge aus.
  • Die Länge eines Glasfaserkabels muss mindestens 2 Meter betragen, die maximale Ausbreitung hängt von der Charakteristik der verwendeten Glasfaser ab.
  • Multimode-Glasfaserkabel können je nach Faserquerschnitt und modaler Dämpfung zwischen 200 und 550 Meter erreichen, während 1000BASE-LX auf Singlemode-Glasfaserkabel bis 5 km spezifiziert sind.
  • 1000BASE-LX10, manchmal auch 1000BASE-LH (LH steht für Long Haul) – Zum Einsatz kommen hierbei Singlemode-Glasfaserkabel mit einer maximalen Länge von 10 km.
  • Die restlichen Eigenschaften gleichen denen von 1000BASE-LX.
  • 1000BASE-BX10 verwendet eine einzige Singlemode-Faser mit bis zu 10 km Reichweite mit je Richtung verschiedenen Wellenlängen: downstream 1490 nm, upstream 1310 nm.
  • 1000BASE-EX und -ZX sind keine IEEE-Standards – Zum Einsatz kommen Singlemode-Glasfaserkabel mit einer maximalen Länge von 40 km (-EX) bzw. 70 km (-ZX).
  • Das verwendete Licht hat eine Wellenlänge von 1550 nm.

2,5- und 5-Gbit/s-Ethernet

2.5GBASE-T und 5GBASE-T, auch 2.5GbE und 5GbE abgekürzt und bisweilen zusammen NBASE-T

Effektiv sind 2.5GBASE-T und 5GBASE-T herunterskalierte Versionen von 10GBASE-T mit 25 % und 50 % der Signalrate.

  • Durch die niedrigeren Frequenzen ist es möglich, geringerwertiges Kabel als das für 10GBASE-T notwendige Cat6A zu verwenden.

Hierbei dient für 2.5G eine Verkabelung mindestens nach Cat5e und für 5G eine nach mindestens Cat6. Als IEEE 802.3bz offiziell verabschiedet, gab es bereits vorher Produkte von einigen Herstellern, darunter Broadcom, Intel und Marvell.

10-Gbit/s-Ethernet

Der 10-Gbit/s-Ethernet-Standard (kurz: 10GbE, 10GigE oder 10GE) bringt zehn unterschiedliche Übertragungstechniken, acht für Glasfaserkabel und zwei für Kupferkabel mit sich. 10-Gbit/s-Ethernet wird für LAN, MAN und WAN verwendet.

Glasfaser

Multimode
  • 10GBASE-SR überbrückt kurze Strecken über Multimode-Fasern, dabei wird langwelliges Licht mit einer Wellenlänge von 850 nm verwendet.
  • Die Reichweite ist dabei abhängig vom Kabeltyp, so reichen 62,5 µm „FDDI-grade“ Fasern bis zu 26 m,
  • 10GBASE-LRM verwendet eine Wellenlänge von 1310 nm, um über alle klassischen Multimode-Fasern (62,5 µm Fiber „FDDI-grade“, 62,5 µm/OM1, 50 µm/OM2, 50 µm/OM3) eine Distanz von bis zu 220 m zu überbrücken.
  • 10GBASE-LX4 (Clause 53) nutzt Wellenlängenmultiplexierung, um Reichweiten zwischen 240 m und 300 m über die Multimode-Fasern OM1, OM2 und OM3 oder 10 km über Singlemode-Faser zu ermöglichen. Hierbei wird gleichzeitig auf den Wellenlängen 1275, 1300, 1325 und 1350 nm übertragen.
Singlemode
  • 10GBASE-LW4 überträgt mit Hilfe von Singlemode-Fasern Licht der Wellenlänge 1310 nm über Distanzen bis zu 10 km.
  • 10GBASE-LR verwendet eine Wellenlänge von 1310 nm, um über Singlemode-Fasern eine Distanz von bis zu 10 km zu überbrücken.
  • 10GBASE-ER benutzt wie 10GBASE-LR Singlemode-Fasern zur Übertragung, jedoch bei einer Wellenlänge von 1550 nm, was die Reichweite auf bis zu 40 km erhöht.
  • Da 10GBASE-ER mit dieser Wellenlänge die seltene Eigenschaft besitzt, kompatibel zu CWDM-Infrastrukturen zu sein, vermeidet er den Austausch der bestehenden Technik durch DWDM-Optik.
OC-192 – STM-64
  • Die Standards 10GBASE-SW, 10GBASE-LW und 10GBASE-EW benutzen einen zusätzlichen WAN-Phy, um mit OC-192- (SONET) bzw. STM-64-Equipment (SDH) zusammenarbeiten zu können.
  • Der Physical Layer entspricht dabei 10GBASE-SR bzw. 10GBASE-LR bzw. 10GBASE-ER, benutzen also auch die gleichen Fasertypen und erreichen die gleichen Reichweiten.
  • Zu 10GBASE-LX4 gibt es keine entsprechende Variante mit zusätzlichem WAN-Phy.

Im LAN erreichen bedingt durch die Verfügbarkeit der Produkte die Standards 10GBASE-SR und 10GBASE-LR eine steigende Verbreitung.

Kupfer

Der Vorteil von Kupferverkabelung gegenüber Glasfasersystemen liegt in der schnelleren Konfektionierung und der unterschiedlichen Nutzbarkeit der Verkabelung (viele Anwendungen über ein Kabel).

  • Darüber hinaus ist die Langlebigkeit von Kupfersystemen nach wie vor höher als bei Glasfasersystemen (Ausbrennen und Verschleiß der LEDs/Laser) und die Kosten bei zusätzlich notwendiger (teurer) Elektronik.
10GBASE-CX4

10GBASE-CX4 nutzt doppelt-twinaxiale Kupferkabel (wie InfiniBand), die eine maximale Länge von 15 m haben dürfen.

  • Dieser Standard war lange der einzige für Kupferverkabelung mit 10 Gbit/s, verliert allerdings zunehmend an Bedeutung durch 10GBASE-T, das zu den langsameren Standards abwärtskompatibel ist und bereits vorhandene Verkabelung nutzen kann.
10GBASE-T

10GBASE-T verwendet wie schon 1000BASE-T vier Paare aus verdrillten Doppeladern.

  • Die dafür verwendete strukturierte Verkabelung wird im globalen Standard ISO/IEC 11801 sowie in TIA-568A/B beschrieben.
  • Die zulässige Linklänge ist vom eingesetzten Verkabelungstyp abhängig: Um die angestrebte Linklänge von 100 m zu erreichen, sind die Anforderungen von CAT-6a/7 zu erfüllen.
  • Mit den für 1000BASE-T eingesetzten CAT-5-Kabeln (Cat-5e) ist nur die halbe Linklänge erreichbar.
  • Der Standard ist in 802.3an beschrieben und wurde Mitte 2006 verabschiedet.

Bei der Übertragung wird der Datenstrom auf die vier Aderpaare aufgeteilt, so dass auf jedem Aderpaar jeweils 2,5 Gbit/s in Senderichtung und in Empfangsrichtung übertragen werden.

  • Wie bei 1000BASE-T wird also jedes Aderpaar im Vollduplex-Betrieb genutzt.
  • Zur Codierung werden die Modulationsverfahren 128-DSQ (eine Art doppeltes 64QAM) und schließlich PAM16 verwendet, wodurch die Nyquistfrequenz auf 417 MHz reduziert wird.

Durch die hohe Signalrate mussten verschiedene Vorkehrungen getroffen werden, um die Übertragungssicherheit zu gewährleisten.

  • Störungen innerhalb des Kabels werden passiv durch einen Kreuzsteg im Kabel vermindert, der für Abstand zwischen den Aderpaaren sorgt.
  • Zusätzlich werden in den aktiven Komponenten digitale Signalprozessoren verwendet, um die Störungen herauszurechnen.

So genanntes Fremdübersprechen (Alien Crosstalk), also das Nebensprechen benachbarter, über längere Strecken eng gebündelter, ungeschirmter Kabel, kann auf diese Weise jedoch nicht verhindert werden.

  • Deshalb sind in den Normen Kabel der Kategorie Cat 6A (Klasse EA) vorgesehen.
  • Diese sind entweder geschirmt oder unterdrücken anderweitig (z. B. 
  • durch dickeren oder speziell geformten Mantel) das Fremdübersprechen ausreichend.
  • Ungeschirmte Cat 6 Kabel (Klasse E) erreichen bei enger Bündelung (und nur dann) nicht die üblichen 100 m Leitungslänge.
  • Zum anderen ist ein Mindestabstand der Steckverbindungen zueinander einzuhalten.

10GBASE-T ist eingeschränkt auch über Cat 5e Kabel möglich, siehe Tabelle mit Leitungslängen.

Converged 10 GbE

Converged 10 GbE ist ein Standard für Netzwerke bei denen 10 GbE und 10 GbFC verschmolzen sind.

  • Zum Converged-Ansatz gehört auch das neue Fibre Channel over Ethernet (FCoE).
  • Das sind FC-Pakete, die in Ethernet gekapselt sind und für die dann ebenfalls die Converged Ethernet-Topologie genutzt werden kann; z. B. sind dann entsprechend aktualisierte Switches (wegen Paketgrößen) transparent für FC- und iSCSI-Storage sowie für das LAN nutzbar.

25-Gbit/s und 50-Gbit/s Ethernet

25 Gigabit (25GbE) und 50 Gigabit Ethernet (50GbE) wurden von einem Industriekonsortium zur Standardisierung vorgeschlagen

25/50GbE sollen in Rechenzentren höhere Leistungen als 10GbE zu deutlich geringeren Kosten als 40GbE bereitstellen, indem Technologie verwendet wird, die bereits für diejenigen 100GbE-Varianten definiert wurde, die auf 25-Gbit/s-Lanes basieren (IEEE 802.3bj).

  • Außerdem lassen sich 25/50-Gbit/s-Verbindungen direkt auf 100 Gbit/s skalieren.
  • Zusätzlich könnte das höhere Fertigungsvolumen von 25-Gbit/s-Komponenten zu einem schnelleren Preisverfall im 100-Gbit/s-Bereich führen.

Übertragungsbandbreite bei 25GBASE-T ist 1250 MHz, wodurch Cat-8-Kabel benötigt wird.

40-Gbit/s und 100-Gbit/s Ethernet

Die schnellste Variante für Twisted-Pair-Kabel unterstützt 40 Gbit/s, außerdem gibt es 40 und 100 Gbit/s sowohl über Kupferkabel (Twinax) als auch über Glasfaserkabel (single- und multimode). Die Angaben entstammen der Spezifikation 802.3ba-2010 des IEEE und definieren folgende Reichweiten (Leitungen je Richtung):

  • 40GBASE-KR4 40 Gbit/s (40GBASE-R mit 4 Leitungen einer Backplane) mindestens 1 m
  • 40GBASE-CR4 40 Gbit/s (40GBASE-R mit 4 Leitungen eines geschirmten Twinax-Kupferkabels) mindestens 7 m
  • 40GBASE-T 40 Gbit/s (Category-8 Twisted Pair) mindestens 30 m, benötigt Kategorie-8-Kabel, Bandbreite 2000 MHz
  • 40GBASE-SR4 40 Gbit/s (40GBASE-R mit 4 OM3-Glasfasern, multimode) mindestens 100 m
  • 40GBASE-LR4 40 Gbit/s (40GBASE-R mit 1 OS2-Glasfaser und vier Farben/Wellenlängen, singlemode, CWDM) mindestens 10 km
  • 100GBASE-CR10 100 Gbit/s (100GBASE-R mit 10 Leitungen eines geschirmten Twinax-Kupferkabels) mindestens 7 m
  • 100GBASE-SR10 100 Gbit/s (100GBASE-R mit 10 OM3-Glasfasern, multimode) mindestens 100 m
  • 100GBASE-SR4 100 Gbit/s (100GBASE-R mit 4 OM4-Glasfasern, multimode) mindestens 100 m (IEEE 802.3bm)
  • 100GBASE-LR4 100 Gbit/s (100GBASE-R mit 1 OS2-Glasfaser und vier Farben, singlemode) mindestens 10 km
  • 100GBASE-ER4 100 Gbit/s (100GBASE-R mit 1 OS2-Glasfaser und vier Farben, singlemode) mindestens 40 km

200-Gbit/s- und 400-Gbit/s-Ethernet

Geschwindigkeiten und erwartete Standards schneller als 100 Gbit/s werden manchmal auch als Terabit Ethernet bezeichnet.

Im März 2013 begann die IEEE 802.3 400 Gb/s Ethernet Study Group mit der Arbeit an der nächsten Generation mit 400 Gbit/s, im März 2014 wurde die IEEE 802.3bs 400 Gb/s Ethernet Task Force gebildet.

  • Im Januar 2016 wurde als zusätzliches Entwicklungsziel 200 Gbit/s hinzugefügt.
  • Die neuen Standards wurden im Dezember 2017 veröffentlicht:
200 Gbit/s
  • 200GBASE-DR4 (Clause 121): 500 m über je vier Monomodefasern
  • 200GBASE-FR4 (Clause 122): 2 km über Monomodefaser, je vier Wellenlängen/Farben (CWDM)
  • 200GBASE-LR4 (Clause 122): 10 km über Monomodefaser, je vier Wellenlängen/Farben (CWDM)
400 Gbit/s
  • 400GBASE-FR8 (Clause 122): 2 km über Monomodefaser, je acht Wellenlängen/Farben (CWDM)
  • 400GBASE-LR8 (Clause 122): 10 km über Monomodefaser, je acht Wellenlängen/Farben (CWDM)
  • 400GBASE-SR16 (Clause 123): 70 m (OM3) oder 100 m (OM4) über je 16 Multimodefasern
  • 400GBASE-DR4 (Clause 124): 500 m über je vier Monomodefasern

800-Gbit/s-Ethernet

Ein PHY-loses 800-Gbit/s-Ethernet wurde im Oktober 2020 in einem Standard des Ethernet Technology Consortiums spezifiziert. Dabei handelt es sich um einen Zusammenschluss aus zwei existierenden 400-Gigabit-Verbindungen auf dem Physical Layer zu einem MAC (OSI-Layer 2).

  • Dieser kann einen physikalischen Endpunkt identifizieren.
  • Hierfür werden acht 106,25-GBit/s-Lanes im Vollduplex-Modus verwendet.
  • Die im 64/66b-Verfahren codierten Daten werden dabei abwechselnd über einen der beiden 400-Gigabit-Physical Coding Sublayer gesendet. Der Internetknoten DE-CIX führte 800-Gbit/s-Ethernet im Oktober 2022 für seine Kunden ein.

Ethernet mit 800 Gbit/s und 1,6 Terabit/s werden von IEEE 802.3 in der 802.3df-Taskforce entwickelt.