Kryptografie/Chiffrier Suits
Chiffrier Suits
- Sammlung von Kryptografieverfahren
Komponenten
- Standardisierte Algorithmen
- Schlüsselaustausch
- Kryptografiealgorithmen (Chiffren)
- Algorithmus für Nachrichtenauthentifizierungscodes (MAC)
- Authentifizierung
- Authentifizierte Kryptografie mit zugehörigen Daten (AEAD)
Aufbau einer Chiffrierzeichenfolge
DHE | RSA | AES256 | SHA256 |
Nomenklatur
- Benennungsschemata für Chiffrezeichenfolgen
- IANA-Namen
- OpenSSL-Namen
Forward Secrecy
- Vertraulichkeit auch dann gewährleisten, wenn der Serverschlüssel kompromittiert wurde
Perfect Forward Secrecy - Eigenschaft einer Kryptografie, die Vertraulichkeit auch dann zu gewährleistet, wenn der Serverschlüssel kompromittiert wurde
Beschreibung
- Perfect Forward Secrecy (PFS) oder Forward Secrecy
- perfekte vorwärts gerichtete Geheimhaltung
- In der Kryptographie eine Eigenschaft bestimmter Schlüsselaustauschprotokolle
- Eigenschaft einer Cipher Suite
- Vertraulichkeit gewährleistet, wenn Serverschlüssel kompromittiert wurde
- Aufgezeichneter Datenverkehr
- kann nicht entschlüsselt werden
- auch, falls ein Angreifer in den Besitz des Serverschlüssels gelangt ist
- Ziel
Gemeinsamen Sitzungsschlüssel so vereinbaren
- dass dieser von einem Dritten auch dann nicht rekonstruiert werden kann, wenn einer der beiden Langzeitschlüssel später einmal kompromittiert werden sollte
- Folgenlosigkeit und break-backward protection
- aufgezeichnete, verschlüsselte Kommunikation auch bei Kenntnis des Langzeitschlüssels nicht nachträglich entschlüsselt werden
- Gelegentlich wird diese Eigenschaft auch unter dem Schlagwort Folgenlosigkeit behandelt, da ein späteres Aufdecken des Langzeitschlüssels folgenlos für die Sicherheit aller früheren Sitzungen bleibt
- Diese Eigenschaft betont auch die alternative englische Bezeichnung break-backward protection
Hintergrund
- Prinzipiell kann jeder Schlüssel aufgedeckt werden
- Aufwendige Analyseverfahren
- Ausspähung
- Diebstahl
- Bestechung
- Erpressung
- Nachlässigkeit
- Brute-Force
- Sitzungsschlüssel
- Deswegen werden Sitzungsschlüssel verwendet, die in kurzen Abständen immer wieder neu ausgehandelt werden
- Ein Angreifer, dem ein derartiger Sitzungsschlüssel bekannt wird, kann deshalb nur den Teil der Kommunikation entschlüsseln, der mit diesem Sitzungsschlüssel verschlüsselt worden war.
- Langzeitschlüssel
- Allerdings sind sämtliche Sitzungsschlüssel der Gefahr ausgesetzt, dass derjenige Langzeitschlüssel kompromittiert wird, der für die gesicherte Übertragung der Sitzungsschlüssel verwendet wird.
- Durch die Kenntnis dieses Langzeitschlüssels könnte ein möglicher Angreifer sämtlichen Datenverkehr entschlüsseln, insbesondere auch die Übertragung der Sitzungsschlüssel und somit Zugriff auf den gesamten früheren Datenverkehr erhalten.
- Perfect Forward Secrecy
Dies wird durch Perfect Forward Secrecy unterbunden
- Angreifer können trotz Kenntnis des Langzeitschlüssels keinerlei Rückschlüsse auf die ausgehandelten Sitzungsschlüssel ziehen
- Bei TLS wird dies dadurch erreicht, dass der Langzeitschlüssel zu einem Signaturverfahren gehört und nur benutzt wird, um Kurzzeitschlüssel zu signieren
- Mit diesen wird jeweils durch einen Diffie-Hellman ein Sitzungsschlüssel ausgehandelt
- Wird ein Server kompromittiert, erfährt der Angreifer nur den langfristigen Signaturschlüssel und die Sitzungsschlüssel gerade aktiver Verbindungen.
- Die Sitzungsschlüssel zurückliegender Verbindungen sind bereits gelöscht und lassen sich nicht mehr rekonstruieren.
Praxis
- Standardverfahren
Bei den heutigen Standardverfahren, bei denen zusammen mit symmetrischen Sitzungsschlüsseln (session key) auch asymmetrische Master-Keys eingesetzt werden, müssen auch die sehr viel langlebigeren Hauptschlüssel (master keys) eines Kommunikationskanals PFS-fähig sein.
- Die Kenntnis eines oder beider privater Schlüssel der Kommunikationsendpunkte darf Angreifern das Aufdecken der Sitzungsschlüssel nicht erleichtern.
- Nachteil
Ein Nachteil von Perfect Forward Secrecy ist der deutlich höhere Aufwand zur Generierung von Sitzungsschlüsseln und die dadurch geringere Verarbeitungsgeschwindigkeit.
- Aus diesem Grunde kann es bei manchen Kryptografieverfahren (z. B. IPsec) deaktiviert werden.
- Empfehlung
Im April 2019 empfahl das deutsche Bundesamt für Sicherheit in der Informationstechnik in seinen Sicherheitsanforderungen für den Einsatz von TLS bei der Übertragung von Daten die Version TLS 1.2 oder TLS 1.3 in Kombination mit Perfect Forward Secrecy zu nutzen.
- Unterstützung
- Von den großen internationalen IT-Unternehmen war Google das Erste, das den Standard unterstützte.
- Mittlerweile wenden auch Facebook, YouTube und andere dieses Verfahren an.
- Nach Angabe des Trustworthy Internet Movement vom Januar 2015 waren damals ca. 20,9 Prozent aller Webseiten, die eine TLS-Kryptografie nutzen, dazu konfiguriert, Cipher Suites zu verwenden, die Perfect Forward Secrecy mit modernen Browsern unterstützten.
Dokumentation
RFC
- RFC 2409, Beispiel bei The Internet Key Exchange (IKE)
- RFC 2412, Beispiel bei IPsec
- RFC 4650
Man-Page
Info-Pages
Siehe auch
Links
Projekt
Weblinks
- Netcraft: SSL: Intercepted today, decrypted tomorrow
- Vorwärtsgeheimnis (Wikipedia)
- Pushing for Perfect Forward Secrecy, an Important Web Privacy Protection (EFF)
- SSL: Heute abgefangen, morgen entschlüsselt (Netcraft)
Cipher Strings
- Wann sollten welche Einstellungen gewählt werden?
- Schlüssellängen
- Algorithmen
- Hash-Funktionen
- Andere kryptografische Parameter
- Entscheidungen
- Sicherheit der Kommunikation
- Hohen Sicherheit der Cipher-Suite bei
- Ausschluss einiger Benutzer
- Unterstützung möglichst vieler Benutzer
- Qualys SSL Labs
Werkzeug zum Test der Einrichtung und Kompatibilität des Webservers
- Achtung
- Hier gewählte Einstellungen sind nur beispielhaft und MÜSSEN angepasst werden!
- Chiffriersuiten auszuwählen und überprüfen
- Eigenen Chiffriersuiten auszuwählen und überprüfen
- basierend auf den Anweisungen im Abschnitt [ChoosingYourOwnCipherSuites]
Starke Chiffren
- Starken Chiffriersuiten = Weniger Clients
- Umgebung
- Lokales Netzwerk
- Einheitliche Client-Infrastruktur
- Maschine-zu-Maschine-Kommunikation
- Cipher suites
- TLS 1.2
- Perfect forward secrecy / ephemeral Diffie Hellman
- strong MACs (SHA-2) or
- GCM as Authenticated Encryption scheme
- OpenSSL string
- EDH+aRSA+AES256:EECDH+aRSA+AES256:!SSLv3
- Configuration A ciphers
ID | OpenSSL Name | Version | KeyEx | Auth | Cipher | MAC |
---|---|---|---|---|---|---|
0x009F | DHE-RSA-AES256-GCM-SHA384 | TLSv1.2 | DH | RSA | AESGCM(256) | AEAD |
0x006B | DHE-RSA-AES256-SHA256 | TLSv1.2 | DH | RSA | AES(256) (CBC) | SHA256 |
0xC030 | ECDHE-RSA-AES256-GCM-SHA384 | TLSv1.2 | ECDH | RSA | AESGCM(256) | AEAD |
0xC028 | ECDHE-RSA-AES256-SHA384 | TLSv1.2 | ECDH | RSA | AES(256) (CBC) | SHA384 |
- Compatibility
Zeitweise waren von diesem Cipher String nur abgedeckt
- Win 7
- Win 8.1 Crypto Stack,
- OpenSSL >= 1.0.1e,
- Safari 6 / iOS 6.0.1 und Safari 7 / OS X 10.9
Schwächere Chiffren
- Schwächere Chiffren = bessere Kompatibilität
- Zum Beispiel gibt es bekannte Schwachstellen für die SHA-1-Hash-Funktion, die in diesem Satz enthalten ist.
- Vorteil
- bessere Kompatibilität mit einer breiten Palette von Clients
- geringere Rechenlast für die Bereitstellungshardware
- Nachteil
- Cipher Suites
- TLS 1.2
- TLS 1.1
- TLS 1.0
- Erlauben von SHA-1
- OpenSSL-Zeichenkette
EDH+CAMELLIA:EDH+aRSA:EECDH+aRSA+AESGCM:EECDH+aRSA+SHA384:EECDH+aRSA+SHA256:EECDH:+CAMELLIA256:+AES256:+CAMELLIA128:+AES128:+SSLv3:!aNULL:!eNULL:!LOW:!3DES:!MD5:!EXP:!PSK:!SRP:!DSS:!RC4:!SEED:!ECDSA:CAMELLIA256-SHA:AES256-SHA:CAMELLIA128-SHA:AES128-SHA'
- Konfiguration B-Chiffren
ID | OpenSSL Name | Version | KeyEx | Auth | Cipher | MAC |
---|---|---|---|---|---|---|
0x009F | DHE-RSA-AES256-GCM-SHA384 | TLSv1.2 | DH | RSA | AESGCM(256) | AEAD |
0x006B | DHE-RSA-AES256-SHA256 | TLSv1.2 | DH | RSA | AES(256) | SHA256 |
0xC030 | ECDHE-RSA-AES256-GCM-SHA384 | TLSv1.2 | ECDH | RSA | AESGCM(256) | AEAD |
0xC028 | ECDHE-RSA-AES256-SHA384 | TLSv1.2 | ECDH | RSA | AES(256) | SHA384 |
0x009E | DHE-RSA-AES128-GCM-SHA256 | TLSv1.2 | DH | RSA | AESGCM(128) | AEAD |
0x0067 | DHE-RSA-AES128-SHA256 | TLSv1.2 | DH | RSA | AES(128) | SHA256 |
0xC02F | ECDHE-RSA-AES128-GCM-SHA256 | TLSv1.2 | ECDH | RSA | AESGCM(128) | AEAD |
0xC027 | ECDHE-RSA-AES128-SHA256 | TLSv1.2 | ECDH | RSA | AES(128) | SHA256 |
0x0088 | DHE-RSA-CAMELLIA256-SHA | SSLv3 | DH | RSA | Camellia(256) | SHA1 |
0x0039 | DHE-RSA-AES256-SHA | SSLv3 | DH | RSA | AES(256) | SHA1 |
0xC014 | ECDHE-RSA-AES256-SHA | SSLv3 | ECDH | RSA | AES(256) | SHA1 |
0x0045 | DHE-RSA-CAMELLIA128-SHA | SSLv3 | DH | RSA | Camellia(128) | SHA1 |
0x0033 | DHE-RSA-AES128-SHA | SSLv3 | DH | RSA | AES(128) | SHA1 |
0xC013 | ECDHE-RSA-AES128-SHA | SSLv3 | ECDH | RSA | AES(128) | SHA1 |
0x0084 | CAMELLIA256-SHA | SSLv3 | RSA | RSA | Camellia(256) | SHA1 |
0x0035 | AES256-SHA | SSLv3 | RSA | RSA | AES(256) | SHA1 |
0x0041 | CAMELLIA128-SHA | SSLv3 | RSA | RSA | Camellia(128) | SHA1 |
0x002F | AES128-SHA | SSLv3 | RSA | RSA | AES(128) | SHA1 |
- Kompatibilität
- Beachten Sie, dass diese Cipher Suites nicht mit dem Crypto Stack von Windows XP funktionieren (z. B. IE, Outlook),
- Erläuterung
- Für eine ausführliche Erklärung der gewählten Chiffriersuiten siehe [ChoosingYourOwnCipherSuites].
- Kurz gesagt, es ist praktisch unmöglich, eine einzige perfekte Chiffrierkette zu finden, und es muss ein Kompromiss zwischen Kompatibilität und Sicherheit gefunden werden.
- Auf der einen Seite gibt es obligatorische und optionale Chiffren, die in einigen RFCs definiert sind, auf der anderen Seite gibt es Clients und Server, die nur Teilmengen der Spezifikation implementieren.
- Die Autoren wollten starke Chiffren, vorwärts gerichtete Geheimhaltung [25] und die bestmögliche Kompatibilität mit den Clients, während sie gleichzeitig einen Chiffrierstring sicherstellen wollten, der auf älteren Installationen (z. B. OpenSSL 0.9.8) verwendet werden kann.
- Out of the box
Die von uns empfohlenen Chiffrierzeichenfolgen sind für die Verwendung durch Kopieren und Einfügen gedacht und müssen "out of the box" funktionieren.
- TLSv1.2 wird gegenüber TLSv1.0 bevorzugt (und bietet dennoch eine brauchbare Chiffrierkette für TLSv1.0-Server).
- AES256 und CAMELLIA256 gelten derzeit als sehr starke Kryptografieen.
- AES128 und CAMELLIA128 gelten derzeit als starke Kryptografieen.
- DHE oder ECDHE für Vorwärtsgeheimnis
- RSA, da dies für die meisten heutigen Konfigurationen geeignet ist
- AES256-SHA als letzter Ausweg: Mit dieser Chiffre am Ende funktionieren sogar Serversysteme mit sehr alten OpenSSL-Versionen (Version 0.9.8 bietet zum Beispiel keine Unterstützung für ECC und TLSv1.1 oder höher).
- Beachten Sie jedoch, dass diese Cipher-Suite keine Vorwärtsverschlüsselung bietet.
- Sie soll die gleiche Client-Abdeckung bieten (z. B. Unterstützung der Microsoft Krypto-Bibliotheken) auf älteren Systemen.
Weblinks
- ENISA-Berichte
Gehen viel mehr auf diese Themen ein und sollten zusätzlich konsultiert werden
- ENISA und Vincent Rijmen, Nigel P. Smart, Bogdan warinschi, Gaven Watson, 2013
- ECRYPT 2 (II & SYM, 2012)
- BSI (für Sicherheit in der Informationstechnik (BSI), 2018)
- Themen
- Zufallszahlengeneratoren
- Keylängen
- ECC (Abschnitt A note on Elliptic Curve Cryptography), ein Warnhinweis zu SHA-1 (Abschnitt A note on SHA-1)
- Diffie-Hellman (Abschnitt A note on Diffie Hellman Key Exchanges).
- All dies ist wichtig, um zu verstehen, warum bestimmte Entscheidungen für Cipher String A und B getroffen wurden
- Für die meisten Systemadministratoren ist jedoch die Frage der Kompatibilität eine der dringendsten.
- Die Freiheit, mit jedem beliebigen Client kompatibel zu sein (auch mit veralteten Betriebssystemen), verringert natürlich die Sicherheit unserer Chiffrierzeichenfolgen.
- Wir behandeln diese Themen im Abschnitt TODO.
- Alle diese Abschnitte ermöglichen es einem Systemadministrator, seine oder ihre Bedürfnisse nach starker Kryptografie mit Benutzerfreundlichkeit und Kompatibilität in Einklang zu bringen.
- Themen