Internet Protocol Version 4

Aus Foxwiki

Internet Protocol Version 4 (IPv4)

Beschreibung

  • Die Version 4 des Internetprotokolls[[1]] wurde im September 1981 von der Organisation ARPA veröffentlicht. Es hat danach lediglich geringfügige Modifikationen gegeben.
  • Im OSI-Modell wird es in Schicht 3 (Network-Layer = Vermittlungsschicht), im DoD-Modell (TCP/IP-Modell) in Schicht 2 (Internet) verarbeitet.
  • vor der Entwicklung von IPv6 auch einfach IP, ist die vierte Version des Internet Protocols (IP).
  • Es war die erste Version des Internet Protocols, die weltweit eingesetzt wurde, und bildet eine wichtige technische Grundlage des Internets. Es wurde in RFC 791 im Jahr 1981 definiert.

Einordnung ins DoD-Modell

Bezeichnung der Daten im Protokoll-Stapel

Eigenschaften

  • Grundlage des TCP/IP-Stapels (TCP/IP-Stack)
  • Teil der Netzwerkschicht des DoD-Modells (02)
  • Setzt auf Data Link Layer auf
  • Ethernetypfeld: 08-00
  • 1977 entwickelt
  • In der Version 4 das Standard-Protokoll im Internet
  • Die Weiterentwicklung zur Version 6 ist abgeschlossen, aber noch wenig genutzt
  • Hardwareunabhängig
  • Die Adressierung ist nicht von der Netzwerktechnologie abhängig
  • Paketorientierter verbindungsloser Datagram-Dienst
  • freie Routenwahl
  • kein Verbindungsauf- oder abbau
  • Keine Fehlerkorrektur

Aufgaben

Transport von Daten über heterogene Netzwerktopologien
  • Abstraktion von Besonderheiten des darunter liegenden Layers 2(z.B. Ethernet, Token Ring oder ATM)
Definition eines Adressschemas
  • Definition von Datagrammen
Datagram-Service
  • Unzuverlässig
    • Keine Auslieferungs-Garantie
    • Keine Fehlerfreiheits-Garantie
Routing zwischen Netzen
Fragmentierung / Reassemblierung von Datagrammen
Übermittlung der Daten vom Transport- zu Networklayer
  • Definition/ Adressierung höherer Protokolle

Header

siehe IPv4/Header

Fragmentierung

siehe IPv4/Fragmentierung

Ausblick: IPv6

Die Internet Engineering Task Force (IETF) hat eine neue IP-Version namens IPv6 entwickelt

  • IPv6 hat eine Länge von 128 Bit = 2128
  • über 667 Billiarden IP-Adressen pro mm² Erde
  • 510 100 000 km2 Erdoberfläche
  • Verbesserte Sicherheit
  • Verbesserte Header, um das Routing zu vereinfachen und zu beschleunigen
  • Der Übergang von IPv4 zu IPv6 läuft fließend

siehe IPv6

Source Routing

siehe IPv4/Source Routing


Anhang

Siehe auch

Dokumentation

RFC
  1. RFC 791IP-Protokoll
  2. RFC 815IP over X.25 Networks
  3. RFC 894IP over Ethernet-Networks
  4. RFC 948IP over 802.3 Networks
  5. RFC 1051IP over Arcnet-Networks
  6. RFC 1055IP over Serial Lines („SLIP“)
  7. RFC 1088IP over Netbios Networks
  8. RFC 1577IP over ATM Networks („Classical IP“)
Man-Pages
Info-Pages

Links

Projekt
Weblinks
  1. https://de.wikipedia.org/wiki/IPv4

TMP

Entwicklung

Zahl der Rechner im Internet (1981 bis 2003)

IPv4 wurde als Teil der Internetprotokollfamilie für das Arpanet entwickelt und kam darin ab 1983 zum Einsatz.

  • Damals waren nur einige hundert Rechner an das Netz angeschlossen.
  • Das Arpanet entwickelte sich zum Internet und überschritt 1989 die Grenze von 100.000 Rechnern.
  • Durch seine Verbreitung im Internet hat IPv4 schließlich auch LAN-Protokolle wie DECnet oder IPX verdrängt. NetWare, AppleTalk und NetBIOS wurden als neue Versionen hervorgebracht, die auf IP aufsetzen.

Am Anfang der 1990er Jahre war erkennbar, dass IP-Adressen bald knapp würden, da die damals übliche Netzklassen-basierte Adressvergabe erheblichen Verschnitt verursachte.

  • Als kurzfristige Lösung wurde 1993 Classless Inter-Domain Routing eingeführt, das eine deutlich effizientere Adressvergabe ermöglichte.
  • Eine weitere kurzfristige Lösung war das 1994 eingeführte Network Address Translation (NAT), das die Wiederverwendung von IP-Adressen ermöglichte.[1] In der Variante Network Address Port Translation (NAPT) ermöglichte es die gleichzeitige Mehrfachverwendung von IP-Adressen.
  • Mit diesen Maßnahmen konnte der Adressbedarf soweit gedämpft werden, dass der Adressraum trotz immensen Wachstums des Internet erst in den 2010er Jahren knapp wurde (siehe Abschnitt Adressknappheit).

Als langfristige Lösung der Adressknappheit sollte ein neues Protokoll mit größerem Adressraum entwickelt werden.

  • Dies führte zuerst zur Entwicklung des experimentellen Protokolls TP/IX, das die Versionsnummer 7 trug und 1993 veröffentlicht wurde.[2] TP/IX sollte dabei einen 64-Bit-Adressbereich unterstützen, wurde dann aber zugunsten von IPv6 verworfen.
  • Die erste Fassung von IPv6 wurde 1995 veröffentlicht und verwendete einen 128-Bit-Adressraum.[3] Die Versionsnummer 5 wurde nicht für einen IPv4-Nachfolger verwendet, da sie bereits 1990 durch das experimentelle Internet Stream Protocol Version 2 (ST2) belegt war, einem für Streaming optimierten Protokoll.[4]


Adressformat

siehe IPv4/Adressen

Paketlänge

Ein IP-Paket besteht aus einem Header und den eigentlichen Daten.

  • Der Datenteil enthält in der Regel ein weiteres Protokoll, meist TCP, UDP oder ICMP.
  • Die maximale Länge eines IP-Pakets beträgt 65535 Bytes (216−1), die maximale Datenlänge 65515 Bytes (Paketlänge – minimale Headerlänge von 20 Byte).
  • Normalerweise beschränkt der Sender die Paketlänge auf diejenige des zugrundeliegenden Mediums.
  • Bei Ethernet beträgt die sogenannte MTU (Maximum Transmission Unit) 1500 Bytes, da ein Ethernet-Datenpaket maximal 1518 Bytes lang sein darf und 18 Bytes vom Ethernet selbst belegt werden.
  • Für IP (Header und Daten) stehen also nur 1500 Bytes zur Verfügung.
  • Deshalb ist die Länge von IP-Paketen oft auf 1500 Bytes festgesetzt.

Routing

IPv4 unterscheidet nicht zwischen Endgeräten (Hosts) und Vermittlungsgeräten (Router).

  • Jeder Computer und jedes Gerät kann gleichzeitig Endpunkt und Router sein.
  • Ein Router verbindet dabei verschiedene Netzwerke.
  • Die Gesamtheit aller über Router verbundenen Netzwerke bildet das Internet (siehe auch Internetworking).

IPv4 ist für LANs und WANs gleichermaßen geeignet.

  • Ein Paket kann verschiedene Netzwerke vom Sender zum Empfänger durchlaufen, die Netzwerke sind durch Router verbunden.
  • Anhand von Routingtabellen, die jeder Router individuell pflegt, wird der Netzwerkteil einem Zielnetzwerk zugeordnet.
  • Die Einträge in die Routingtabelle können dabei statisch oder über Routingprotokolle dynamisch erfolgen.
  • Die Routingprotokolle dürfen dabei sogar auf IP aufsetzen.

Bei Überlastung eines Netzwerks oder einem anderen Fehler darf ein Router Pakete auch verwerfen.

  • Pakete desselben Senders können bei Ausfall eines Netzwerks auch alternativ „geroutet“ werden.
  • Jedes Paket wird dabei einzeln „geroutet“, was zu einer erhöhten Ausfallsicherheit führt.

Beim Routing über IP können daher

  • einzelne Pakete verlorengehen,
  • Pakete doppelt beim Empfänger ankommen,
  • Pakete verschiedene Wege nehmen,
  • Pakete fragmentiert beim Empfänger ankommen.

Wird TCP auf IP aufgesetzt (d. h. die Daten jedes IP-Pakets enthalten ein TCP-Paket, aufgeteilt in TCP-Header und Daten), so wird neben dem Aufheben der Längenbeschränkung auch der Paketverlust durch Wiederholung korrigiert.

  • Doppelte Pakete werden erkannt und verworfen.
  • Die Kombination TCP mit IP stellt dabei eine zuverlässige bidirektionale Verbindung eines Datenstroms dar.

ICMP

IP ist eng verknüpft mit dem Internet Control Message Protocol (ICMP), das zur Fehlersuche und Steuerung eingesetzt wird.

  • ICMP setzt auf IP auf, das heißt ein ICMP-Paket wird im Datenteil eines IP-Pakets abgelegt.
  • Eine IP-Implementierung enthält stets auch eine ICMP-Implementierung.
  • Wichtig ist zum Beispiel die ICMP-Source-Quench-Mitteilung, die den Sender über das Verwerfen von Paketen wegen Überlastung eines Routers informiert.
  • Da jedes IP-Paket die Quell-IP-Adresse enthält, können Informationen an den Sender zurückübermittelt werden.
  • Dieser kann nach einem „Source-Quench“ die Paketsendefrequenz verringern und so die Notwendigkeit eines weiteren Verwerfens minimieren oder vermeiden.

ICMP kann zusammen mit dem Don’t-Fragment-Bit des IP-Pakets auch eingesetzt werden, um die maximale Paketgröße MTU eines Übertragungsweges zu ermitteln (sogenannte PMTU Path Maximum Transmission Unit).

  • Dies ist die MTU desjenigen Netzwerkes mit der kleinsten MTU aller passierten Netzwerke.
  • Dadurch kann auf Fragmentierung verzichtet werden, wenn der Sender nur Pakete mit der maximalen Größe der PMTU erzeugt.

siehe Internet Control Message Protocol

IPv4 auf Ethernet

IPv4 kann auf vielen verschiedenen Medien aufsetzen, zum Beispiel auf seriellen Schnittstellen (PPP oder SLIP), Satellitenverbindungen usw.

  • Im LAN-Bereich wird heute fast immer Ethernet eingesetzt.
  • Ethernet verwaltet eigene 48-Bit-Adressen.
  • Wenn IP über Ethernet gesendet wird, wird ein 14 (oder bei VLAN 18) Byte großer Ethernet-Header vor dem IP-Header gesendet.
  • Nach den Daten folgt eine 32-Bit-CRC-Prüfsumme.
  • Neben der maximalen Paketlänge von 1522 (bzw. 1518) Bytes kann Ethernet keine kleineren Pakete als 64 Bytes übertragen, so dass zu kurze IP-Pakete (Datenlänge kleiner als 46 Bytes) mit Nullbytes erweitert werden (sogenanntes Padding).
  • Die Länge im IP-Header gibt dann Auskunft über die tatsächliche Paketgröße.

Im Ethernet hat jede Netzwerkkarte ihre eigene, herstellerbezogene 48-Bit-Adresse, zusätzlich gibt es eine Ethernet-Broadcastadresse.

  • Ein Sender muss die Ethernetadresse der Zielnetzwerkkarte kennen, bevor ein IP-Paket gesendet werden kann.
  • Dazu wird ARP (Address Resolution Protocol) verwendet.
  • Jeder Rechner verwaltet einen ARP-Cache, in dem er ihm bekannte Zuordnungen von Ethernet-Kartenadressen speichert.
  • Unbekannte Adressen erfährt er über ARP mittels einer Anfrage (ARP-Request) über einen Ethernet-Broadcast (Nachricht an alle Empfänger), die der zugehörige Empfänger beantwortet (ARP-Reply).

Datagrammfragmentierung

Auf dem Weg vom Sender zum Empfänger kann es vorkommen, dass ein Datagramm ein Netz durchlaufen muss, welches nur kleine Datagramme unterstützt.

  • Jedes Datagramm erhält vom Sender eine Kennung (Identification).
  • Stellt ein Router auf dem Weg zum Ziel fest, dass das Datagramm für das nächste Teilnetz zu groß ist, so kann er es in zwei Fragmente aufteilen.
  • Dazu sind folgende Schritte notwendig:
  • Aufteilen der Nutzdaten an einer 64-Bit-Grenze (das zweite Fragment enthält dann nicht unbedingt ein Vielfaches von 64 Bit Daten)
  • Kopieren der Headerdaten des Originaldatagramms in die neuen Header
  • Setzen des „more-fragments“-Flags beim ersten Fragment
  • Beim zweiten Fragment erhält das more-fragments Flag den Wert des Originaldatagramms, da das Originaldatagramm bereits ein Fragment gewesen sein kann.
  • Erneutes Setzen der Länge-Felder in den Headern
  • Beim zweiten Fragment enthält Fragment-Offset die Summe aus Fragment-Offset des Originaldatagramms und die Anzahl der (Nutzdaten-)Bytes des ersten Fragments.

Das Fragmentieren in n > 2 Fragmente funktioniert entsprechend.

Um ein Paket wieder zusammenzusetzen, kombiniert der Empfänger alle Fragmente, welche die gleiche Kennung (Identifikation), den gleichen Absender, Empfänger und das gleiche Protokoll haben.

  • Dabei erkennt er das erste Fragment daran, dass Fragment-Offset den Wert 0 hat.
  • Das jeweils nächste Fragment erkennt er ebenfalls am Fragment-Offset und das letzte Fragment daran, dass more-fragments den Wert 0 hat.

Höhere Protokolle

IPv4 ist ein geroutetes Protokoll (Schicht 2 im TCP/IP-Referenzmodell – Schicht 3 im ISO/OSI-Modell).

  • Auf IPv4 werden weitere Protokolle aufgesetzt, das heißt in den Datenteil des IP-Pakets werden die Header, Daten und eventuelle Trailer der oberen Protokolle eingefügt (Protokollstapel).
  • Eine Liste der registrierten Protokolle findet sich in unixoiden Betriebssystemen in der Datei „/etc/protocols“.

Neben dem erwähnten ICMP wird TCP verwendet, das TCP/IP zusammen mit IP den Namen gegeben hat.

  • TCP ist ein verbindungsorientiertes Protokoll, das einen byteorientierten, bidirektionalen, zuverlässigen Datenstrom zur Verfügung stellt.
  • Es wird im WAN-Bereich praktisch für alle Arten von Daten- und Informationsübertragungen eingesetzt.

UDP, ein paketorientiertes Protokoll, setzt ebenfalls auf IP auf.

  • Es ist ein einfaches Protokoll, das die Paketeigenschaften von IP im Wesentlichen beibehält (verbindungslos, unzuverlässig, erlaubt doppelte Pakete etc.).
  • TCP und UDP fügen IP eine Prüfsumme über die Daten (die Prüfsumme im IP-Header prüft nur die Headerdaten) und als Quell- und Zielport jeweils eine 16-Bit-Zahl hinzu.
  • Diese Ports bilden zusammen mit der jeweiligen Quell- und Zieladresse im IP-Paket sogenannte Endpunkte.
  • Prozesse kommunizieren über diese Endpunkte.
  • TCP baut eine Verbindung nicht zwischen IP-Adressen, sondern zwischen zwei Endpunkten auf.

Die weiteren Protokolle setzen alle entweder auf TCP oder auf UDP auf.

  • Ein wichtiges Protokoll ist das Domain Name System DNS, das eine Umsetzung von Rechnernamen zu IP-Adressen erlaubt.
  • Es überträgt Informationen normalerweise über UDP, der Abgleich zwischen zwei DNS-Servern kann aber auch TCP verwenden.

Die Ports teilen sich auf in:

  • privilegierte Ports (1–1023); diese dürfen nur vom Benutzer Root verwendet werden.
  • registrierte Ports (1024–49.151); die Registrierung unterliegt der IANA.
  • Eine Liste findet sich auf Unix-Systemen in der Datei „/etc/services“.
  • nicht registrierte Ports (49.152–65.535)

Adressknappheit

Anzahl verfügbarer IPv4-Adressblöcke zwischen 1995 und 2015

Aufgrund des unvorhergesehenen Wachstums des Internets herrscht heute Adressknappheit.

  • Im Januar 2011 teilte die IANA der asiatisch-pazifischen Regional Internet Registry APNIC die letzten zwei /8-Adressblöcke nach der regulären Vergabepraxis zu.[5] Gemäß einer Vereinbarung aus dem Jahr 2009 wurde am 3. Februar 2011 schließlich der verbliebene Adressraum gleichmäßig auf die regionalen Adressvergabestellen verteilt: jeweils ein /8-Adressblock pro Vergabestelle.[6] Seitdem hat die IANA auf der globalen Ebene keine weiteren /8-Adressblöcke mehr zu vergeben.

Auf der regionalen Ebene verschärften die Regional Internet Registrys ihre Vergabepraktiken, um aus dem letzten /8-Adressblock möglichst lange schöpfen zu können.

  • Bei der APNIC traten diese am 15. April 2011 in Kraft, da die zuvor erhaltenen beiden /8-Adressblöcke bereits nach drei Monaten aufgebraucht waren.

Am 25.

  • November 2019 hat RIPE NCC ihren /8-Adressblock endgültig aufgebraucht.
  • Seitdem werden nur noch /24-Kleinstblöcke per Warteliste aus Rückläufern vergeben.

Adressfragmentierung

Die historische Entwicklung des Internets wirft ein weiteres Problem auf: Durch die mit der Zeit mehrmals geänderte Vergabepraxis von Adressen des IPv4-Adressraums ist dieser inzwischen stark fragmentiert, d.

  • h., häufig gehören mehrere nicht zusammenhängende Adressbereiche zur gleichen organisatorischen Instanz.
  • Dies führt in Verbindung mit der heutigen Routingstrategie (Classless Inter-Domain Routing) zu langen Routingtabellen, auf welche Speicher und Prozessoren der Router im Kernbereich des Internets ausgelegt werden müssen.
  • Zudem erfordert IPv4 von Routern, Prüfsummen jedes weitergeleiteten Pakets neu zu berechnen, was eine weitere Prozessorbelastung darstellt.

Siehe auch

Weblinks